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Abstract 
Increased cellular damage in aging tissues releases circulating cell-free genomic DNA (ccf-gDNA) into the bloodstream, and these fragments 
are associated with a higher risk of frailty and dementia. We hypothesized that identifying the tissue of origin for ccf-gDNA using methylation 
signatures can distinguish subgroups of participants with distinct clinical outcomes, biological aging rates, and energy use. Serum ccf-gDNA 
from 181 participants in the Religious Orders Study or Rush Memory and Aging Project (ROS-MAP) was assessed for DNA methylation at one 
timepoint using the Illumina MethylationEPIC array. Clinical outcomes 6 years after ccf-gDNA measurement were determined for the following: 
frailty, cognitive test scores, and cardiovascular disease. Hierarchical clustering identified major clusters based on the predominance of ccf-
gDNA source: cardiovascular, erythrocyte progenitor, and immune cell. Participants with cardiovascular-enriched ccf-gDNA (CV ccf-gDNA) had 
higher rates of myocardial infarction (39%) at the last study visit compared to other subgroups (Immune ccf-gDNA: 21%; Erythrocyte ccf-gDNA: 
23%), and similar findings were observed for congestive heart disease and stroke. There were no significant associations between cognitive 
test scores and ccf-gDNA subgroups. Individuals with CV ccf-gDNA demonstrated 3.1 times higher odds of being frail compared to the other 
groups and showed increased epigenetic age acceleration for the fragments compared to the other subgroups, indicating that this group was 
enriched with ccf-gDNA originating from older cells. The CV ccf-gDNA subgroup exhibited dysregulation of glycine and serine metabolism and 
pathways integral to cardiovascular health, endothelial function, and inflammation. We demonstrate that ccf-gDNA methylation patterns can 
detect high-turnover tissues and identify older adults at higher risk of frailty and cardiovascular disease.
Keywords: Cardiovascular, Coronary heart disease, DNA, DNA methylation

Aging is a complex process characterized by accumulated cel-
lular damage, which can lead to dysfunctional cell processes 
and an increased risk of cell death (1). Cell death, through 
mechanisms such as apoptosis, necrosis, and autophagy, plays 
a crucial role in the physical and cognitive decline observed 
in aging individuals (2–4). These mechanisms are tightly reg-
ulated under normal physiological conditions to maintain 

cellular homeostasis but can become dysregulated with aging, 
leading to the loss of cells in critical tissues and organs and, 
consequently, functional impairments that contribute to phys-
ical and cognitive decline (5,6). Circulating cell-free genomic 
DNA (ccf-gDNA) fragments are small, double-stranded,  
single-stranded, and circular DNA molecules released into the 
bloodstream following cell death and turnover processes and 

Received: October 11 2024; Editorial Decision Date: April 5 2025.
© The Author(s) 2025. Published by Oxford University Press on behalf of the Gerontological Society of America. All rights reserved. For commercial re-use, 
please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via 
the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/article/80/7/glaf081/8114242 by Johns H
opkins U

niversity user on 08 August 2025

https://orcid.org/0000-0003-2433-0728
https://orcid.org/0000-0002-2749-1239
https://orcid.org/0000-0003-3689-554X
https://orcid.org/0000-0001-9809-0064
https://orcid.org/0000-0002-8186-0066
mailto:pabadir1@jhmi.edu
reprints@oup.com


2 The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 2025, Vol. 80, No. 7

are both passively and actively secreted into circulation (7). 
These fragments have garnered significant interest as poten-
tial minimally invasive biomarkers for age-associated dis-
eases such as Alzheimer’s disease and other forms of dementia 
(8,9). Elevated levels of ccf-gDNA in serum have been asso-
ciated with poorer physical and cognitive health outcomes 
(10). However, key questions remain: Which tissues primarily 
release these fragments, do their sources differ between indi-
viduals with and without cognitive and physical decline, and 
are differences in energy utilization and metabolic pathways 
associated with fragments from different sources?

Given the genomic origin, a notable characteristic of ccf-
gDNA is the presence of DNA methylation (DNAm) (11) pat-
terns, or “signatures,” that are unique to specific tissues and 
change with age, thereby serving as a molecular fingerprint 
for the cellular origin of the DNA. Identifying the tissue of 
origin for ccf-gDNA is an important step in determining dif-
ferential cell death and turnover rates in different tissues. This 
information may prove critical to understanding the molecu-
lar mechanisms underlying aging and age-related diseases, as 
well as facilitating early detection, monitoring, and response 
to treatment based on an individual’s unique molecular sig-
nature (12–15). In addition to its potential for identifying 
cell composition (here, the source tissue of origin for the ccf-
DNA), DNAm is also the basis for calculating biological age 
using epigenetic clocks, which are computed based on specific 
sets of age-related CpGs (16). Although chronological age is 
a strong predictor of many age-related diseases, it does not 
account for the great degree of heterogeneity seen in aging 
and varied responses in adults of the same age to a common 
stressor (eg, infection or surgery). The field of geroscience has, 
therefore, identified biomarkers that can better convey this 
heterogeneity and provide a biological age for an individual, 
one of which is the development of epigenetic clocks. The first 
epigenetic clock, developed using saliva-derived DNA, intro-
duced the concept of biological age—a quantitative measure 
of gene–environment interactions, as opposed to chronologi-
cal age, which only accounts for the passage of time (17).

Two epigenetic clocks hold relevance for characterizing 
ccf-gDNA and examining its association with physical and 
cognitive decline. The Hannum clock (18), derived from 
blood-based DNA, consists of 71 distinct CpGs and strongly 
predicts aging-related outcomes. Hannum age is particularly 
relevant in the context of physical and cognitive decline (19). 
The GrimAge clock is a strong predictor of mortality, making 
it a valuable tool for evaluating mortality risk in various clin-
ical settings (20,21).

It is important to note that these epigenetic clocks were 
developed and validated using DNA extracted from live cells. 
In contrast, studying the biological age of DNA fragments 
from dead cells could potentially offer new insights into the 
intricacies of cellular aging and death with implication in 
understanding human resilience and reserve. Additionally, by 
incorporating serum metabolomics, organism-wide metabolic 
changes and altered energy pathway utilization can be identi-
fied and linked to tissue-specific cell death processes and bio-
logical age of ccf-gDNA fragments. This integrated approach 
has the potential to significantly advance our understanding 
of disease progression, facilitate early detection, and enable 
personalized therapeutic interventions, ultimately improving 
patient outcomes across a broad range of medical conditions.

In this study, we collected serum ccf-gDNA fragments 
from 181 older adults and analyzed them using the Illumina 

MethylationEPIC array to identify tissue source and estimate 
epigenetic clocks. We examined cross-sectional and longitu-
dinal associations between different clusters of individuals 
grouped by tissue source of ccf-gDNA and clinical diagnoses. 
We also compared the epigenetic clock estimates from the ccf-
gDNA to cellular DNA from helper T cells (CD4 cells) to com-
pare the biological age of dead and living cells. Additionally, 
we used targeted metabolomics to identify circulating meta-
bolic changes associated with different ccf-gDNA fragment 
tissue sources.

Method
Sample Description
Our study used stored serum samples from participants 
(N = 181) in the Religious Orders Study (ROS) or Rush 
Memory and Aging Project (MAP), collectively known as 
ROS-MAP (22,23), to extract cf-gDNA. A subset of these 
participants (n = 39) had previously undergone CD4 cell iso-
lation from whole blood samples and subsequent DNA isola-
tion. The ROS, initiated in 1994, includes nuns, priests, and 
brothers from across the United States. The MAP, launched in 
1997, comprises community-dwelling older adults from the 
greater Chicago area. Both studies are analytic cohort stud-
ies of risk factors for common chronic diseases and condi-
tions of aging in which all participants are organ donors (22). 
Both studies received approval from the Institutional Review 
Board of Rush University Medical Center and adhered to 
the Declaration of Helsinki. Participants provided a signed 
informed consent, Anatomic Gift Act, and repository consent 
for sharing data for research purposes. Annual assessments 
for all participants collect data on various physical, psycho-
logical, medical, and biological factors (22,23). For this study, 
serum samples were chosen from one timepoint close to study 
enrollment for ccf-gDNA measurement, and participants had, 
on average, 6 years of follow-up for clinical measures.

Biological Measures
Circulating cell-free genomic DNA
We measured ccf-gDNA in serum samples using digital PCR 
with the ThermoFisher QuantStudio 3D Digital PCR system 
using the protocol previously described (10). Briefly, serum 
was diluted in phosphate-buffered saline (pH 7.4), heat dena-
tured, and then vortexed to break up the pellet. Following 
centrifugation, the supernatant was used for digital PCR. 
Primers targeting RPPH1 (Qiagen) amplified circulating frag-
ments using the following thermocycling conditions: 95°C for 
120 seconds, and 40 cycles of 95°C for 15 seconds and 55°C 
for 45 seconds, followed by imaging. Amplification thresh-
olds were applied, and data were analyzed using QIAcuity 
Software Suite 2.5.0.

ccf-gDNA methylation
We purified ccf-gDNA from 450 µL of serum using the QIAamp 
Circulating Nucleic Acid Kit (Qiagen) and eluted it in 40 µL 
of the provided elution buffer. We analyzed bisulfite-treated 
purified ccf-gDNA using the Illumina Infinium Methylatio-
nEPIC BeadChip (24), which contains over 850,000 CpG 
sites, including more than 90% of those in the previous 
450K BeadChip. The EPIC BeadChip assesses an additional 
~400,000 CpG sites and includes over 350,000 sites at poten-
tial enhancer regions. We processed raw red and green channel 
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intensity files according to the pipeline previously outlined 
(15) to ensure accurate results for deconvolution. CpG sites 
were filtered out based on the following criteria: represented 
by less than 3 beads, detection p-value > .01, or mapped to a 
sex chromosome. We performed background correction and 
normalization using the preprocessIllumina function, which 
eliminates background noise based on internal control probes 
and normalizes samples to a predetermined control. This 
resulted in 423,455 CpG sites for deconvolution analysis per 
the analytic pipeline described in Moss et al. (15).

Deconvolution of ccf-gDNA methylation
DNAm patterns of cf-gDNA were used to deconvolve the 
samples and estimate tissue of origin. Sample deconvolution 
was carried out using the pipeline described by Moss et al. 
(15), which is publicly available on GitHub (https://github.
com/nloyfer/meth_atlas). Using 423,455 CpG sites from the 
DNAm preprocessing, and a reference atlas of 7891 CpG 
sites, we obtained estimates for 25 possible unique tissue 
types of origin for the ccf-gDNA. The estimates, represented 
as proportions on a scale of 0–1, were converted to percent-
ages and used as predictors for inferential analyses.

CD4 cell DNAm
CD4+ T cells were isolated from frozen peripheral blood 
mononuclear cells (PBMCs) from a subset of 39 ROS-MAP 
participants (as part of other research) using magnetic- 
activated cell sorting (MACS), and final samples were at 
least 95% pure for CD4+ T cells, as assessed by flow cytom-
etry. AllPrep DNA/RNA Micro kit was used to isolate blood 
DNA, according to manufacturer’s instructions. The Illumina 
InfiniumHumanMethylation450 platform was used to gen-
erate DNAm profiles. Additional details of the protocol are 
detailed in Yu et al. (25) CD4+ T-cell methylation data were 
provided by the RADC Data Hub.

Epigenetic age
We calculated biological age using 2 epigenetic clocks for ccf-
gDNA (n = 181) and CD4 samples (n = 39) using the Horvath 
DNAm Age online calculator: HannumAge (18) and Grim-
Age (20). The calculator (https://dnamage.genetics.ucla.edu) 
provides epigenetic age acceleration estimates by regressing 
epigenetic age on chronological age. The residuals serve as 
continuous indicators of accelerated aging, with positive val-
ues reflecting accelerated aging and negative values indicating 
decelerated aging compared to chronologic age. As some of 
the CD4 and cf-gDNA samples were collected at different 
timepoints (within 1–2 years from each other), we used mul-
tivariable linear regression to assess the association between 
epigenetic age acceleration in cf-gDNA samples and CD4 
samples, adjusting for the time between study visits.

Metabolomics
Metabolites were extracted and quantified using the Abso-
luteIDQ kit p400 (Biocrates Life Science AG, Innsbruck, 
Austria). Targeted analyses of 400 total metabolites (includ-
ing amino acids, biologic amines, polar lipids, and neutral lip-
ids) were performed on Q-Exactive Plus mass spectrometer 
with a Vanquish UHPLC system (Thermo Fisher, Waltham, 
MA, USA).

Serum samples (10 μL) were pipetted onto the center 
of spots in a 96-well Biocrates kit, dried with Eppendorf 
Vacufuge speedvac, and incubated with 50 µL of 5% PITC 

reagent for 20 minutes. After drying, 300 µL of 5 mM ammo-
nium acetate in methanol was added to each well, and the 
plate was incubated for 30 minutes at room temperature 
(200 rpm). Samples were centrifuged (500g, 2 minutes), and 
150 µL of each sample was transferred to an empty 96-deep-
well plate. The extracts were diluted for liquid chromatog-
raphy (LC) by adding 150 µL of high-performance liquid 
chromatography–mass spectrometry (HPLC-MS) grade 
water and for flow injection analysis (FIA) by adding 250 
µL of FIA running solvent (Biocrates solvent diluted with 
HPLC-MS grade methanol). The LC plate was run first, with 
5 µL of each sample injected onto the Biocrates column. The 
mobile phase consisted of Solvent A (water containing 0.2% 
formic acid) and Solvent B (acetonitrile containing 0.2% for-
mic acid) with the following gradient: 0–0.25 minutes: 0% B 
at 0.8 mL/min flow; 1.5 minutes: 12% B at 0.8 mL/min flow; 
2.7 minutes: 17.5% B at 0.8 mL/min flow; 4 minutes: 50% B 
at 0.8 mL/min flow; 4.5 minutes: 95% B at 0.8 mL/min flow; 
4.7 minutes: 95% B at 1.0 mL/min flow; 5.1 minutes: 95% B 
at 1.0 mL/min flow; 5.25 minutes: 0% B at 1.0 mL/min flow; 
and 5.8 minutes: 0% B at 0.8 mL/min flow. Evaluation of the 
samples was carried out using the Thermo Fisher XCalibur 
and Biocrates MetIDQ software. The FIA plate was run with 
20 µL injection of each sample directly into the MS with 
Biocrates FIA solvent diluted with HPLC-MS grade methanol 
as the mobile phase, with the following flow rate: 0–1.4 min-
utes: 50 µL/min; 1.6 minutes: 200 µL/min; 2.8 minutes: 200 
µL/min; and 3.00 minutes: 50 µL/min. Concentrations were 
calculated using the MetIDQ software. PITC, ammonium 
acetate, water, methanol, and acetonitrile (LC-MS grade) 
were purchased from Sigma Aldrich.

Clinical Measures
Cognitive functioning
A battery of 17 cognitive tests common to both cohorts was 
conducted at each study visit to assess the following cognitive 
domains: episodic memory, semantic memory, working mem-
ory, perceptual orientation, and perceptual speed (26). Raw 
scores from the battery of cognitive tests were converted to 
z-scores (M = 0, SD = 1) and averaged to yield a global cog-
nitive function score where higher scores indicate better cog-
nitive functioning. A complete description of each cognitive 
test can be found in Supplementary Appendix A. Further, we 
made clinical diagnoses of dementia and its causes, includ-
ing Alzheimer’s dementia, mild cognitive impairment (MCI), 
and no cognitive impairment (NCI) as previously reported 
(27–29).

Physical frailty
Participant physical functioning, including frailty, was 
assessed at each study visit using a battery of 4 tests assess-
ing grip strength, timed walk, body composition, and fatigue 
(30,31). Raw scores from the battery of tests were converted 
to z-scores and averaged to yield a frailty score where higher 
scores correspond to greater frailty. A complete description of 
each assessment used in the frailty composite can be found in 
Supplementary Appendix B.

Statistical Methods
All statistical analyses were conducted using Python and R 
statistical software. Below we describe specific statistical tests 
and hyperparameters associated for each analysis.
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CCF-gDNA tissue origin estimation
We obtained estimates of tissue of origin for the ccf-gDNA 
using the methods outlined previously by Moss et al. (15). 
Prior to the following statistical analyses, the tissue source 
data were processed to condense tissues with low occurrence 
into overarching organ system groups. First, several tissue 
sources were excluded: neutrophils, thyroid cells, prostate 
cells, uterus/cervix cells, breast cells, adipocytes, and cortical 
neurons. Neutrophils were excluded because they comprise a 
large proportion of the ccf-gDNA and occlude other patient-
to-patient differences. The remaining cell types were excluded 
due to very low occurrence or being a part of sex-dependent 
organs. The remaining tissue sources were combined into 
the following organ system groups including: cardiovascu-
lar (vascular endothelial cells and left atrial cells), immune 
(monocytes, natural killer cells, B cells, CD4+ T cells, and 
CD8+ T cells), erythrocyte (erythrocyte progenitors), digestive 
(pancreatic beta, acinar, and duct cells, hepatocytes, colon 
epithelial cells, bladder cells, kidney cells, and upper gastroin-
testinal tract cells), and respiratory (lung cells and head and 
larynx cells).

Hierarchical clustering of ccf-gDNA tissue origin
We used the Scipy package in Python to apply hierarchical 
clustering (specifying a Euclidean distance metric and Ward 
linkage method) to derive clusters of ccf-gDNA signatures.

Association of ccf-gDNA groups with clinical measures
Statistical tests for comparisons of continuous cognition and 
frailty indicators between clusters included Kruskal–Wallis 
tests followed by the Mann–Whitney U test for post hoc com-
parisons with a significance threshold of p = .05. Addition-
ally, the prevalence of discrete frailty status (robust, prefrail, 
and frail) and cognitive status (normal cognition, MCI, and 
dementia) in patients from each ccf-gDNA group was mea-
sured at the time of the visit in which ccf-gDNA was collected 
and annually until the final visit. These prevalences were com-
pared to an assumed uniform distribution using a chi-squared 
test. Additionally, the time in years from the ccf-gDNA visit 
to prefrailty and frailty was assessed for each group. These 
analyses indicate the time until the first diagnosis of either 
status. Patients can revert from prefrailty to robust or frailty 
to prefrailty diagnoses after this preliminary diagnosis. Addi-
tional statistical analysis was not conducted due to the limited 
sample size. Lastly, we used multinomial logistic regression to 
examine whether clusters identified from hierarchical cluster-
ing were associated with discrete frailty status at the serum 
visit.

Clinical disease prevalence and time-to-event analysis
We assessed the prevalence of several age-related clinical 
conditions (anemia, cancer, vascular claudication, thyroid 
disease, diabetes, hypertension, head injury) across the 3 ccf-
gDNA patient groups derived from hierarchical clustering. 
The presence or absence of disease was noted annually and 
measured at the same visit at which ccf-gDNA was measured. 
Heatmaps were generated to represent the proportion of 
patients positive or negative for the disease at the study’s final 
visit. We assessed the statistical significance of deviation from 
an assumed uniform distribution between negative and posi-
tive for each patient group using a chi-squared test. Addition-
ally, the time in years from the visit at which ccf-gDNA was 

collected to diagnosis with the disease was plotted for each 
ccf-gDNA group. These graphs assume that patients are neg-
ative for the disease until the first time they are marked pos-
itive in the database. Along with this assumption, we assume 
patients are negative for the disease even if there is missing 
data for visits prior to a positive diagnosis.

Analysis of epigenetic age acceleration
Multivariable linear regression was also used to examine (i) 
the association between ccf-gDNA groups and epigenetic age 
acceleration at the serum study visit, adjusting for age at this 
visit, and (ii) epigenetic age acceleration estimates derived from 
ccf-gDNA and CD4 cells, adjusting for the time between study 
visits. To aid in the interpretation of findings from the mod-
els examining differences between ccf-gDNA groups, we used 
epigenetic age acceleration estimates derived from subtracting 
chronological age from epigenetic age to obtain units in years.

Targeted metabolomic analysis of ccf-gDNA tissue clusters
We used the R-based web tool, MetaboAnalyst R, to compute 
fold changes of individual metabolites in the cardiovascular 
group compared to the erythrocyte and immune groups. We 
also used MetaboAnalyst to conduct metabolite set enrich-
ment analysis to identify perturbed pathways in the cardio-
vascular ccf-gDNA group with respect to the erythrocyte and 
immune groups. The MetaboAnalyst algorithm and associ-
ated statistical adjustments for multiple comparisons testing 
were previously published (32). We processed and normalized 
the data using the SciKit-Learn package in Python prior to 
feeding the data into MetaboAnalyst. The original metabo-
lite dataset contained 326 metabolites for 181 participants. 
Metabolites with missing values for >20 (~10%) patients 
were excluded. We performed KNN imputation using the 
SciKit-Learn imputer module (k = 5 neighbors, Euclidean dis-
tance metric) to fill in missing values for the remaining metab-
olites. These steps led to a processed dataset composed of 203 
metabolites. The data were then log (base 10) normalized, 
and outliers below the first percentile and above the 99th per-
centiles were removed. Finally, the data were standard scaled. 
These steps led to a cleaned dataset of 158 patients and 203 
metabolites.

Within MetaboAnalyst, the Statistical Analysis (one factor) 
tool was used to compute fold changes, and the Enrichment 
Analysis tool was used to conduct metabolite set enrichment 
analysis. For both tools, the data were read in as a spreadsheet 
containing processed metabolomic data of either cardiovas-
cular and erythrocyte subgroups (for comparing participants 
enriched with cardiovascular ccf-gDNA against a baseline 
of participants enriched with erythrocyte progenitor ccf-
gDNA) or cardiovascular and immune subgroups (for com-
paring participants enriched with cardiovascular ccf-gDNA 
against a baseline of participants enriched with immune 
ccf-gDNA). Metabolites were read in according to their 
HMDB IDs. Because we processed the data prior to using the 
MetaboAnalyst tool, no data filtration or normalization was 
performed within the web tool. For metabolite set enrichment 
analysis, we used the SMPDB pathway database and included 
pathways with at least 5 metabolite entries.

Lastly, Pearson correlations were used to assess the rela-
tionship between metabolite intensity values and the tissue 
and organ source of origin for ccf-gDNA. Metabolic pathway 
analysis was then performed on the metabolites that showed 
significance in correlational analyses.
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Results
In this study, we cross-sectionally measured ccf-gDNA in 
serum samples obtained from 181 older adults using the Illu-
mina MethylationEPIC array to explore associations between 
ccf-gDNA tissue origins, epigenetic aging, and longitudinal 
clinical diagnoses. Our investigation included both cross- 
sectional and longitudinal analyses, comparing fragment 
sources and epigenetic clock estimates from ccf-gDNA and 
cellular DNA (PBMCs), alongside metabolomics to identify 
biomarkers linked to aging and disease states. Table 1 pres-
ents the demographic characteristics of the study participants. 
We obtained serum samples from most of the 181 partici-
pants during their first follow-up visit (n = 111; 61%), 1 year 
after joining the study. The remaining participants provided 
samples between Visits 2 and 9. At the time of sample collec-
tion (ie, index visit), most (n = 113) had normal cognition. 
However, 62 had MCI, and 6 had Alzheimer’s dementia. The 
study population primarily consisted of females (71%), with 
99% identifying as White.

Decoding the Origins of ccf-gDNA in Older Adults
We employed the deconvolution pipeline by Moss et al. (15) 
to estimate the tissue of origin for ccf-gDNA samples. Supple-
mentary Figure S1 displays the original output from this anal-
ysis. Results indicated that, on average, across all samples, 
78% of ccf-gDNA originated from neutrophils, as anticipated 
due to the samples originating from serum. This finding aligns 
with the patterns observed by Moss et al. (15). Vascular endo-
thelial cells were the next most common cell type of origin 
(5.3%), followed by other blood cell types (Supplementary 
Figure S1). We then streamlined the analysis by grouping 

these tissues into broader organ system-related categories. 
This approach was taken to reduce the complexity of individ-
ual tissue types within an organ, allowing for a more focused 
examination of organ-specific ccf-gDNA fragment distribu-
tion across our cohort.

Unsupervised Hierarchical Clustering Reveals 3 
Major CCF-gDNA Subgroups
Building on our analysis of ccf-gDNA origins, we next 
explored the diversity within our dataset through unsuper-
vised hierarchical clustering. This approach aimed to identify 
potential patterns or subgroups among participants based 
on the tissue source signatures of their ccf-gDNA. As shown 
in Supplementary Figure S1, each participant had a hetero-
geneous signature of ccf-gDNA tissue sources; therefore, 
we were curious whether there were emergently similar ccf-
gDNA tissue source phenotypes. After processing, we applied 
hierarchical clustering to the ccf-gDNA organ systems for 
each patient to derive 3 major, distinct phenotypes (Figure 
1B): an Immune ccf-gDNA fragment-enriched subgroup 
(Immune ccf-gDNA, n = 98), an Erythrocyte progenitor ccf-
gDNA fragment-enriched subgroup (Erythrocyte ccf-gDNA, 
n = 38), and a Cardiovascular ccf-gDNA fragment-enriched 
subgroup (CV ccf-gDNA, n = 45). The Immune ccf-gDNA 
subgroup was correlated with lower white blood cell (WBC) 
counts compared to the CV ccf-gDNA subgroup (p < .05) 
(Supplementary Figure S2); however, there were no significant 
differences between groups for red blood cell (RBC) count 
(Supplementary Figure S2). All 3 groups demonstrated similar 
chronological age and body mass index (Figure 2A, Supple-
mentary Figure S3).

Table 1. Demographic, Cognitive, and Biological Characteristics at Index Visit

Analytic Sample 
(N = 181)

Immune 
Subgroup (n = 98)

Cardiovascular 
Subgroup (n = 45)

Erythrocyte 
Subgroup (n = 38)

Age, mean (SD) 84.5 (5.5) 84.6 (5.5) 84.5 (5.3) 84.3 (5.8)

Sex (female), n (%) 130 (71.8) 69 (70.4) 32 (71.1) 29 (76.3)

Race (White), n (%) 179 (98.9) 96 (98.0) 45 (100) 38 (100)

Years of education, median (IQR) 15 (4) 16 (5) 14 (4) 14 (4)

Years of follow-up, median (IQR) 6 (4) 6 (5) 5 (4) 6 (4)

Cognitive status

  NC 113 (62.4) 62 (63.3) 28 (62.2) 23 (60.5)

  MCI 62 (34.3) 31 (31.6) 17 (37.8) 14 (36.8)

  ADRD 6 (3.3) 5 (5.1) 0 (0) 1 (2.6)

Global cognitive function, z-score mean (SD) −0.13 (0.6) −0.18 (0.6) −0.10 (0.5) −0.10 (0.5)

Frailty status, n (%)*

  Robust 41 (29.1) 21 (28.8) 8 (20.5) 12 (41.4)

  Prefrail 81 (57.4) 42 (57.5) 24 (61.5) 15 (51.7)

  Frail 19 (13.5) 10 (13.7) 7 (17.9) 2 (6.9)

Frailty, z-score mean (SD) 0.29 (0.6) 0.29 (0.6) 0.45 (0.6) 0.09 (0.7)

Biological data

  ccf-gDNA (copies/µL, raw), mean (SD) 7.48 (8.12) 5.95 (6.91) 10.80 (8.37) 7.47 (9.61)

  ccf-gDNA (copies/µL, purified), mean (SD) 0.59 (0.77) 0.60 (0.93) 0.70 (0.58) 0.40 (0.43)

Epigenetic clock acceleration estimate, mean (SD)

  HannumAge acceleration −0.27 (8.53) −2.21 (7.37) 1.38 (6.25) 2.78 (7.17)

  GrimAge acceleration −0.23 (6.43) −1.10 (5.02) 2.22 (6.22) −0.90 (5.70)

Notes: *Data on frailty categories available for n = 141. ADRD = Alzheimer’s disease or related dementia; ccf-gDNA = circulating cell-free genomic DNA; 
IQR = interquartile range; MCI = mild cognitive impairment; NC = normal cognition.
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Cardiovascular CCF-gDNA Subgroup Has Higher 
Proportion of Cardiovascular Comorbidities and 
Frailty
All 3 groups had similar ages and years to death following the 
ccf-gDNA visit (Figure 2A). Individuals in the CV ccf-gDNA 
subgroup demonstrated an increased incidence of myocardial 
infarction, congestive heart failure, and stroke compared to 
the other groups (Figure 2B). Specifically, they had a greater 
overall cumulative incidence of individuals with myocardial 
infarction, congestive heart failure, and stroke compared to 
the other major ccf-gDNA subgroups at the last study visit 
(Figure 2B). Thirty-nine percent of participants in the CV 
ccf-gDNA subgroup had myocardial infarction at the last  
follow-up visit, compared to 23% of individuals in the Eryth-
rocyte ccf-gDNA subgroup and 21% of individuals in the 
Immune ccf-gDNA subgroup. A diagnosis of congestive heart 
failure was noted in 28% of participants in the CV ccf-gDNA 
subgroup at the last study visit, while 21% and 8% of partic-
ipants in the Erythrocyte and Immune ccf-gDNA subgroups, 
respectively, had this diagnosis. Finally, 29% of participants 
in the CV ccf-gDNA subgroup had a diagnosis of stroke at 
the last follow-up visit compared to 21% and 20% in the 
Erythrocyte and Immune ccf-gDNA subgroups, respectively.

Given the established association between cardiovascular 
morbidity, mortality, and declines in physical and cognitive 
functions, our analysis next focused on the CV ccf-gDNA 
subgroup, given their integral role in the broader spectrum 
of health and aging dynamics. Frailty is an age-related het-
erogenous syndrome characterized by diminished capacity 
to respond to physical and psychosocial stressors and is a 
risk factor for development of major adverse cardiac events 
(MACEs) (33). The CV ccf-gDNA subgroup had significantly 
higher frailty scores than the Erythrocyte ccf-gDNA subgroup 
(Figure 3A). Eighteen percent of participants in the CV ccf-
gDNA subgroup and 14% of Immune ccf-gDNA subgroup 
participants were frail at the time of ccf-gDNA measure-
ment compared to 7% of participants in the Erythrocyte 
ccf-gDNA subgroup. At the last study visit, 62% of CV ccf-
gDNA subgroup participants were frail, compared to 21% 

Figure 1. Derivation of distinct patient groups based on circulating 
cell-free genomic DNA (ccf-gDNA) tissue source. (A) Distribution of 
original and processed tissue sources of ccf-gDNA in our population. 
The Immune tissue ccf-gDNA fragment-enriched subgroup comprises 
monocytes, natural killer cells, B cells, CD4+ T cells, and CD8+ T cells. 
The Cardiovascular ccf-gDNA fragment-enriched subgroup includes 
vascular endothelial cells and left atrial cells. Erythrocyte progenitors 
were considered as their own tissue group since these cells comprise 
a significant proportion of ccf-gDNA fragments on their own and do not 
fit into a separate tissue category. The digestive tissue group comprises 
pancreatic beta, acinar, and duct cells, hepatocytes, colon epithelial 
cells, bladder cells, kidney cells, and upper gastrointestinal tract cells. 
The respiratory cells include lung cells and head and larynx cells. Finally, 
the excluded cell types include neutrophils, thyroid cells, prostate 
cells, uterus/cervix cells, breast cells, adipocytes, and cortical neurons. 
Neutrophils were excluded because they comprise a large proportion 
of the ccf-gDNA and obscure other patient-to-patient differences. The 
remaining cell types were excluded due to very low occurrence or being 
a part of sex-dependent organs. (B) Hierarchical clustering using the 
Ward technique and Euclidean distance metric of patient tissue ccf-
gDNA signatures. Clustering suggests 3 ccf-gDNA-enriched subgroups: 
Immune, Cardiovascular, and Erythrocyte progenitor.

Figure 2. The Cardiovascular circulating cell-free genomic DNA 
(ccf-gDNA) fragment-enriched subgroup is associated with 
cardiovascular outcomes. (A) Age at study visit across all 3 ccf-gDNA 
subgroups showing chronological age and time to death, calculated as 
the years until death from the visit at which ccf-gDNA was collected. 
(B) Proportional breakdown of myocardial infarction, congestive heart 
failure, and stroke at last follow-up visit (upper heatmaps) and across the 
study period (lower graphs) for the 3 subgroups. Dashed line on graphs 
indicates time of ccf-gDNA measurement. n = 38 Erythrocyte ccf-gDNA 
subgroup; n = 98 Immune ccf-gDNA subgroup; n = 45 Cardiovascular 
ccf-gDNA subgroup.
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of Erythrocyte ccf-gDNA subgroup participants and 34% of 
Immune ccf-gDNA subgroup participants.

Individuals identified as being in the CV ccf-gDNA sub-
group had 3.1 times higher odds of being more frail than 
individuals in the Erythrocyte ccf-gDNA subgroup when 
adjusting for age, sex, and ccf-gDNA levels. The CV ccf-
gDNA subgroup frailty scores also appeared higher than the 
Immune ccf-gDNA subgroup, but no significant differences 
were detected between these 2 groups (Figure 3B and C, 
Supplementary Figure S3). A similar study of cognitive out-
comes among these participants showed no significant differ-
ences in global cognitive score across ccf-gDNA subgroups 
(Figure 3D), and no significant differences across groups at 
time of ccf-gDNA measurement or at last study visit (Figure 
3E and F). There were no significant differences between sub-
groups for cognition subscores, including perceptual orienta-
tion, perceptual speed, semantic memory, working memory, 
and episodic memory (Supplementary Figure S3).

Epigenetic Age Acceleration of CCF-gDNA 
Fragments Differs Across Subgroups
Given the similar chronological ages across our identified 
ccf-gDNA subgroups, we turned our attention to exploring 
variations in biological age of the ccf-gDNA fragments, spe-
cifically whether epigenetic age estimates from DNAm pat-
terns of ccf-gDNA were comparable to those derived from 
living cells (CD4 T cells) in this older adult population. As 
shown in Table 2, zero-order correlations demonstrate weak 
associations (p < .05) between the epigenetic clocks and 
chronological age at the relevant study visit. Notably, correla-
tions between the CD4-derived epigenetic clocks were larger 
in magnitude compared to the correlations among the ccf-
gDNA derived epigenetic clocks.

We also examined the variability in biological age derived 
from the circulating ccf-gDNA fragments among the CV, 
Immune, and Erythrocyte ccf-gDNA subgroups. Using multi-
variable linear regression, we empirically tested whether epi-
genetic age acceleration estimates were comparable between 
methylation data derived from ccf-gDNA and CD4 cells, 
adjusting for the time between the ccf-gDNA and CD4 sample 
visits. Our findings demonstrate that ccf-gDNA Hannum and 
GrimAge acceleration estimates are associated with the same 
estimates from CD4 cells (β = 0.26, 95% confidence interval 
[CI] = 0.09–0.43, p = .003 and β = 0.18, 95% CI = 0.02–0.34, 
p = .03, respectively).

Using the 3 ccf-gDNA subgroups identified by hierarchical 
clustering, results from linear regression models revealed that 
membership in either the Erythrocyte ccf-gDNA (β = −3.11, 
SE = 1.21, p = .01) or Immune ccf-gDNA (β = −3.32, 
SE = 0.99, p = .001) subgroup was associated with an approx-
imately 3-year decrease in GrimAge acceleration relative to 
the CV ccf-gDNA subgroup (Figure 4). Similarly, assignment 
to the Immune ccf-gDNA subgroup was associated with an 
approximately 3.5-year decrease in Hannum age acceleration 
relative to the CV ccf-gDNA subgroup (β = −3.60, SE = 1.28, 
p = .01). No other significant associations were detected.

In summary, our findings indicate that (i) epigenetic age 
estimates calculated from ccf-gDNA are, in general, correlated 

Figure 3. The Cardiovascular circulating cell-free genomic DNA 
(ccf-gDNA) fragment-enriched subgroup has higher frailty measures 
compared to other subgroups, and there is no difference in cognitive 
status across subgroups. (A) Continuous frailty scores (z-standardized) 
for all 3 ccf-gDNA subgroups at time of visit at which ccf-gDNA was 
collected. (B) Heatmap demonstrating proportional breakdown of frailty 
status at time of ccf-gDNA measurement and last follow-up visit. (C) 
Proportion of prefrailty diagnosis and frailty diagnosis across the study 
period for the 3 subgroups. Dashed line on graphs indicates time of ccf-
gDNA measurement. (D) Global cognition scores (z-standardized) for all 
3 ccf-gDNA subgroups at time of visit at which ccf-gDNA was collected. 
(E) Heatmap demonstrating proportional breakdown of cognitive status 
at time of ccf-gDNA measurement and last follow-up visit. (F) Proportion 
of mild cognitive impairment diagnosis and dementia diagnosis across 
the study period for the 3 subgroups. Dashed line on graphs indicates 

time of ccf-gDNA measurement. n = 38 Erythrocyte ccf-gDNA subgroup; 
n = 98 Immune ccf-gDNA subgroup; n = 45 Cardiovascular ccf-gDNA 
subgroup. MCI = mild cognitive impairment; NC = normal cognition
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with estimates derived from living cells in older adults and (ii) 
assignment to the CV ccf-gDNA subgroup is associated with 
accelerated epigenetic aging, as indicated by GrimAge and 
Hannum age estimates.

Examining the Links Between the Circulating 
Metabolome and Tissue Source of ccf-gDNA 
Fragments
We next studied the circulating metabolome to further charac-
terize the ccf-gDNA tissue subgroups identified by hierarchical 
clustering. Given the differences in frailty and cardiovascular 
disease between the CV ccf-gDNA subgroup compared to the 
immune and erythrocyte subgroups, we sought to identify 
differences in energy utilization between these groups. As a 
directly measurable marker of cell metabolic processes, inte-
grating serum metabolomics with epigenetics approaches to 

measure biological age and age acceleration can provide addi-
tional information about lifestyle risk factors for premature 
mortality (34,35). Targeted approaches were used to analyze 
a range of metabolites in the serum samples and identify spe-
cific metabolic signatures associated with the tissue of origin 
and organ system for ccf-gDNA.

We performed a metabolite set enrichment analysis to 
identify enriched pathways between the 3 ccf-gDNA sub-
groups derived from hierarchical clustering. Several meta-
bolic pathways were enriched in the CV ccf-gDNA subgroup 
in comparison to the Immune and Erythrocyte ccf-gDNA 
enriched subgroups (Figure 5A). These pathways predom-
inantly include amino acid and lipid metabolic pathways. 
Metabolomics analysis highlighted notable variations in sev-
eral metabolites and pathways across groups, with the most 
pronounced dysregulation observed in the urea cycle (Figure 
5B) and glycine/serine metabolic pathway (Figure 5C) within 
the CV ccf-gDNA subgroup, as compared to both the Immune 
and Erythrocyte ccf-gDNA subgroups. Several metabolites 
within the urea cycle appear to be upregulated in the CV ccf-
gDNA subgroup, as seen by positive log fold changes, when 
compared to the other 2 subgroups. Within the glycine/serine 
pathway, several metabolites are either up- or downregulated 
in the CV ccf-gDNA subgroup when compared to the other 2 
subgroups, and the directionality of this change is always the 
same compared to the other 2 subgroups.

Supplementary Tables S1 and S2 show distinct metabolite 
profiles that are correlated with different tissue and organ 
sources for ccf-gDNA fragments. The results of these analyses 
indicate that the metabolite profiles differ for the 3 main ccf-
gDNA groups, although the CV ccf-gDNA subgroup appears 
to be most different from the other 2 groups.

Discussion
This study provides a multifaceted view of aging through the 
analysis of ccf-gDNA in older adults, combining epigenetics 
and metabolomics to link ccf-gDNA tissue origins with epi-
genetic aging and clinical outcomes. Circulating cell-free DNA 
fragments have shown promise as potential biomarkers for 
many diseases, including cancer diagnostics and noninvasive 
fetal screening. In this study, 3 distinct subgroups of individ-
uals were identified based on ccf-gDNA tissue of origin, and 
we found associations with the CV ccf-gDNA subgroup and 
cardiovascular disease outcomes as well as with higher rates 
of frailty. We did not note any associations with ccf-gDNA 
tissue of origin and cognitive test scores. Further analysis 
revealed variability in epigenetic age across subgroups, with 

Table 2. Zero-Order Correlations Among Epigenetic Clocks Derived From CCF-gDNA (n = 181) and CD4 Cells (n = 39), With Chronological Age, at Index 
Visit

1. 2. 3. 4.

1. Chronological Age –

2. ccf-gDNA Hannum 0.48 –

3. ccf-gDNA GrimAge 0.46 0.42 –

4. CD4 Hannum 0.58 0.33 0.42 –

5. CD4 GrimAge 0.84 0.37 0.55 0.56

Notes: ccf-gDNA = circulating cell-free genomic DNA fragments. Bold values reflect correlations with p-values <.05. Because the ccf-gDNA samples were 
not all collected at the same time as the CD4 samples, the chronological age variable (ie, age at visit) varies between the ccf-gDNA and CD4 epigenetic 
clocks.

Figure 4. The Cardiovascular circulating cell-free genomic DNA (ccf-
gDNA) fragment-enriched subgroup has increased age acceleration 
compared to the other subgroups. Calculated GrimAge acceleration 
and Hannum age acceleration across subgroups. N = 38 Erythrocyte 
ccf-gDNA subgroup; N = 98 Immune ccf-gDNA subgroup; N = 45 
Cardiovascular ccf-gDNA subgroup.
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the CV ccf-gDNA subgroup demonstrating greater epigenetic 
age acceleration, pointing to ccf-gDNA as a potential holistic 
marker of biological aging. Metabolomic analysis supported 
these findings by highlighting specific metabolic pathways 
associated with each subgroup, especially the CV ccf-gDNA 
subgroup, underscoring the metabolic basis of aging and dis-
ease risk.

This work found that most ccf-gDNA fragments originated 
from neutrophils, consistent with previous studies (15), and 
showed the feasibility of tissue deconvolution using smaller 
sample volumes than in prior studies. A prior study purified 
cf-DNA from 6 mL of plasma before performing EPIC array 
methylation analysis (11), while our study required only 450 
µL total serum. Our findings provide new insights into using 
ccf-gDNA as a potential biomarker for monitoring physi-
cal health and cardiovascular disease in older adults. Frailty 
remains a critical indicator of health that has stronger asso-
ciations with morbidity and mortality than age alone (36). 
Frailty is a state of increased vulnerability to adverse health 
outcomes resulting from a decline in physiological reserves 
and function across multiple organ systems and is charac-
terized by diminished strength and endurance. The frailty 

phenotype was first operationalized using participants in the 
Cardiovascular Health Study, a prospective observational 
study focused on identifying incident risk factors for develop-
ing cardiovascular disease in older adults (37), and a compan-
ion study published in the same cohort of individuals showed 
that 38% of individuals classified as frail had a diagnosis of 
cardiovascular disease (38).

More recently, large prospective cohort studies have 
established a link between frailty and increased incidence of 
developing major adverse cardiovascular events and found 
increased hazard of developing myocardial infarction (haz-
ard ratio [HR] 1.95), coronary artery disease (HR 1.35), and 
stroke (HR 1.71) (33), which are 3 outcomes that we found 
to be higher in participants in the CV ccf-gDNA subgroup. 
This relationship between frailty and cardiovascular disease is 
hypothesized to be bidirectional, given the overlap in molecu-
lar and physiologic drivers for both conditions, which include 
mitochondrial dysfunction, cell death, senescence, and dys-
regulated metabolic systems (37,39).

The Immune ccf-gDNA subgroup, consisting of individuals 
with ccf-gDNA originating from monocytes, B cells, T cells, 
and natural killer cells, demonstrated lower total WBC counts 

Figure 5. Identification of metabolic signatures associated with each circulating cell-free genomic DNA (ccf-gDNA) group. (A) Metabolite set 
enrichment analysis demonstrates enriched metabolic pathways when conducting pairwise comparisons between Cardiovascular and Erythrocyte 
or Cardiovascular and Immune ccf-gDNA subgroups. No common pathways were enriched between Erythrocyte and Immune ccf-gDNA subgroups. 
(B) Schematic of the urea cycle and enriched metabolites in this study. (C) A simplified schematic of the glycine and serine metabolism pathway with 
indication of which metabolites are enriched. 
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compared to the other 2 subgroups, and a possible hypothesis 
for this association could be due to increased WBC death and 
consequent ccf-gDNA fragment production, possibly from 
increases in neutrophil extracellular traps (NETs) in these 
individuals. Future studies measuring complete differential 
WBC counts for participants can confirm if there are inverse 
relationships between T cells, monocytes, and immune cell 
ccf-gDNA. This study showed no associations between the 
Erythrocyte ccf-gDNA subgroup and laboratory measures of 
hemoglobin; however, we cannot rule out that our study may 
be underpowered for this outcome.

We found weakly positive correlations between age accel-
eration estimates between calculated DNAm Age using ccf-
gDNA fragments and Hannum and GrimAge clocks using 
methylation data from living CD4 T cells. Measuring the bio-
logical age of ccf-gDNA fragments can convey different infor-
mation regarding an individual’s biological age compared to 
CD4 T-cell-derived biological age due to it originating from 
various tissues. There have been recent efforts to develop 
ccf-gDNA-based aging clocks, such as the one from Shtumpf 
et al., which predicts chronologic age based on age-related 
changes in nucleosome organization resulting in longer dis-
tances between nucleosomes (40). Our study did not sequence 
ccf-gDNA fragments and focused on quantifying amounts of 
ccf-gDNA originating from different tissues. Future studies 
can combine these analytic approaches to better understand 
changes in ccf-gDNA with aging and examine whether altered 
nucleosome organization also varies by tissue type of origin. 
It may be that combining the 2 measures is most informative 
by incorporating the biological age of living cells from CD4-
derived clocks and the biological age of fragments released 
in circulation; however, the relatively small sample size in 
this study is a limiting factor in performing these analyses 
but can be examined in follow-up studies with larger sample 
sizes. Given the associations with CV ccf-gDNA subgroup, 
increased frailty and cardiovascular disease, and higher bio-
logical age, it may be detrimental to have higher levels of 
older fragments in circulation, which could be a byproduct of 
inefficient or dysfunctional cellular repair processes.

Metabolomics results demonstrate that CV ccf-gDNA sub-
group has a distinct metabolomic profile when compared  
to the immune and erythrocyte subgroups. Urea cycle- 
associated metabolites (aspartate, arginine, and hydroxy- 
proline) were enriched in CV ccf-gDNA participant serum 
compared to others. Additionally, glycine/serine metabolic 
pathways demonstrated dysregulation in metabolomic analysis 
for CV ccf-gDNA subgroup, specifically for glycine, threonine, 
and methionine (all increased), and serine (decreased). When 
comparing our findings to the literature, there are some incon-
sistencies in the trends we observe. Firstly, elevations in serine 
were recently shown to be associated with reduced prevalence 
of coronary artery disease in hospitalized patients, and our 
study showing decreased levels of serine in serum is consistent 
with the increased prevalence of developing cardiovascular 
disease seen in the CV ccf-gDNA subgroup (41). Elevated gly-
cine in plasma is associated with a lower hazard of developing 
hypertension, a risk factor for both congestive heart disease 
and stroke (42). Increased methionine is associated with heart 
failure with preserved ejection fraction, a subtype of heart fail-
ure that older adults are at higher risk of developing (43).

Several limitations when attempting to directly com-
pare the metabolic results from this study with other car-
diovascular disease-focused studies are the differences in 

the material studied (serum vs plasma), study sample size,  
follow-up period, and sex and age of their study population. 
Additionally, the parent ROS-MAP study may have recruited 
more healthy older adults compared to these other studies, 
and there could be a component of survivorship bias that is 
leading to the differences in metabolomics findings.

Recent work incorporating metabolomics datasets to 
develop biological clocks demonstrate the ability to generate 
risk profiles for individuals (34,44), and our study demon-
strates feasibility of developing multilayered biologic clocks 
using metabolomics and epigenetic clock data generated from 
banked patient serum.

Our study’s strengths include using novel methodology to 
estimate tissue of origin of ccf-gDNA fragments in older indi-
viduals, standardized measures to capture multiple aspects 
of cognitive and physical functioning, and the longitudinal 
nature of the data that allows for understanding these asso-
ciations over time. Additionally, the ability to identify sub-
populations of frailty based on ccf-gDNA source opens new 
avenues of study to further characterize this heterogenous 
syndrome and apply precision-medicine-based interventions 
that are developed to benefit certain subgroups with frailty. 
The study is also strengthened by including DNAm data from 
living cells, allowing us to compare epigenetic age estimates 
between 2 different cell states (ie, living vs dead). However, 
the study’s limitations include the small sample size, which 
may have impacted the statistical power of this study, contrib-
uting to null results for cognitive outcomes.

This study utilizes serum samples collected as part of the 
longitudinal ROS-MAP study. However, there are limitations 
when studying ccf-gDNA from serum samples, specifically an 
overestimation of cell-free DNA levels in serum samples com-
pared to plasma due to contamination of circulating cf-DNA 
with DNA originating from WBCs as part of serum processing 
methods (45). Excluding neutrophils from clustering analysis, 
as we did in this study, is one way to minimize the outsized 
contribution of WBC DNA contaminating circulating ccf-
gDNA in serum samples, but it also limits the conclusions of 
this study by excluding the predominant source of ccf-gDNA 
fragments. Neutrophil-derived ccf-gDNA fragments can also 
be generated from NETosis, a process that is present in car-
diovascular diseases and can contribute to atherosclerotic 
plaque formation (46). Future work can specifically study 
relationships between NETosis, neutrophil-derived circulat-
ing ccf-gDNA, and physical and cognitive decline in older 
adults. Another limitation is the inability to determine how 
ccf-gDNA estimates changed as individuals aged and the lack 
of a validation test of actual neuronal cell counts in the same 
individuals to assess whether ccf-gDNA estimates of cortical 
neurons reflect actual neuronal loss.

Our prior work has shown associations between ccf-gDNA 
and cognitive score trajectories, and high levels of ccf-gDNA 
were associated with an increased hazard of developing a 
dementia diagnosis over an 8-year period. Although this 
prior study also showed associations between ccf-gDNA and 
steeper frailty trajectories, and we did find associations with 
ccf-gDNA tissue of origin and frailty status, we did not see 
significant differences across the 3 ccf-gDNA tissue of ori-
gin subgroups for either cognitive diagnosis or cognitive test 
score. Thirty-eight percent of participants in this study devel-
oped a diagnosis of dementia at the last study visit, and our 
findings show no associations between cognitive test scores 
or clinical diagnosis of cognitive status and major ccf-gDNA 
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subgroups identified in this study. An additional factor that 
may have resulted in null findings for ccf-gDNA of origin 
and cognitive outcomes is that among the participants in this 
study, there was a very low percentage of ccf-gDNA originat-
ing from cortical neurons (0.3%). Given that the one-time 
assessment of ccf-gDNA in this study was done early in the 
course of ROS-MAP enrollment for these participants, future 
studies can examine ccf-g DNAm at later timepoints, such as 
at the time of conversion from normal cognition to MCI to 
see if at this later timepoint there are associations between 
cognitive outcomes and ccf-gDNA tissue of origin.

This study shows that characterizing ccf-gDNA tissue of 
origin can identify individuals that have higher rates of car-
diovascular events, particularly myocardial infarction, stroke, 
and congestive heart failure. Individuals with higher levels of 
cardiovascular-derived ccf-gDNA also have ccf-gDNA that 
has a higher biological age, indicating that they originated 
from older cells. Our findings provide new insights into devel-
oping methods for biochemical characterization of frailty 
subtypes using cell-free DNA.

Supplementary Material
Supplementary data are available at The Journals of 
Gerontology, Series A: Biological Sciences and Medical 
Sciences online.
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