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SUMMARY

Peripheral T cell lymphomas (PTCLs) comprise heterogeneous malignancies with limited therapeutic options.
To uncover targetable vulnerabilities, we generate a collection of PTCL patient-derived tumor xenografts
(PDXs) retaining histomorphology and molecular donor-tumor features over serial xenografting. PDX demon-
strates remarkable heterogeneity, complex intratumor architecture, and stepwise trajectories mimicking pri-
mary evolutions. Combining functional transcriptional stratification and multiparametric imaging, we identify
four distinct PTCL microenvironment subtypes with prognostic value. Mechanistically, we discover a subset
ofPTCLsexpressingEpstein-Barr virus-specificTcell receptorsanduncover thecapacityofcancer-associated
fibroblasts of counteracting treatments. PDXs’ pre-clinical testing captures individual vulnerabilities, mirrors
donor patients’ clinical responses, and defines effective patient-tailored treatments. Ultimately, we assess
the efficacy of CD5KO- and CD30- Chimeric Antigen Receptor T Cells (CD5KO-CART and CD30_CART,
respectively), demonstrating their therapeuticpotential and thesynergistic roleof immunecheckpoint inhibitors
for PTCL treatment. This repository represents a resource for discovering and validating intrinsic and extrinsic
factors and improving the selection of drugs/combinations and immune-based therapies.

INTRODUCTION

In 2023, a total of 80,550 cases of lymphomas were diagnosed in

the USA, with a staggering number of 20,180 deaths (https://seer.

cancer.gov/statfacts/html/nhl.html). Peripheral T cell lymphomas

(PTCLs) represent �15% of all lymphomas and comprise >30

different entities.1,2 PTCL patients display a remarkable clinical

heterogeneity, with a 5-year overall survival (OS) ranging from
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14% (adult T cell leukemia-lymphoma [ATLL]) to 70% (ALK+

anaplastic large cell lymphoma [ALCL]).3 Regrettably, chemother-

apies (including anthracycline-containing regimens) have limited

efficacy, and relapsed/refractory PTCLs experience a short OS

(�6 months),4 calling for effective agents and/or combinations.5

Improvements in PTCL classification, predictive biomarkers iden-

tification, and targeted agent development remain unmet medical

needs.6

In recent years,multipledrugswereapproved, andseveral are in

clinical trials. Nevertheless, response rates remain disappointing

(25%–29%), with progression-free survival < 4 months.6–8

This ismainly due to PTCL heterogeneity and rarity, aswell as to

the lack of informative models (only a few PTCL cell lines mainly

corresponding to ATLL and ALCL subsets). Cell lines are unable

to fully recapitulate the biology and therapeutic responsiveness

of human cancers.9–11 Many of these limitations are shared by

transgenic mice, including a few PTCL models.12–16

Patient-derived tumor xenografts (PDXs) can provide critical

insight into overcoming treatment resistance, identifying target-

able liabilities17–22 and microenvironment stimuli,23–25 and

enabling pre-clinical trials.26,27 Despite limitations,28–31 PDXs

are considered among the most informative tools to model hu-

man cancers.26,27,32,33 However, lymphoma PDXs remain poorly

represented.17,34–37

Here, we describe an extensive library of PDXs corresponding

to different PTCL entities. We show that these models (1) faith-

fully recapitulate the biological features and driver defects of

their matched donor neoplasms, (2) allow the recognition of

causative genetic defects and suitable dependencies, (3) under-

line the lymphoma-host dependencies and host-related refrac-

tory mechanisms, and (4) represent informative platforms to

test established/innovative and cell-based therapeutic strate-

gies. This repository will foster scientific discoveries and the

development of therapeutic regimens tailored to molecularly
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Figure 1. Generation of PTCL PDX and PDX derivates

(A) Schematic representation of PDX generation and propagation strategies. Different primary sample sources and routes of implantation are annotated.

(B) Pie chart indicating the PTCL total and subtype-specific number of PDXs generated.

(C) PTCL PDX subtype-specific percentage of engraftment.

(D) Number of PDXs generated from naive or refractory patients for different PTCL subtypes.

(E) Time of engraftment (in days) of PDXs belonging to different PTCL subcategories along different rounds of propagation (T1 to T10). Error bars represent

standard deviations.

(legend continued on next page)
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defined subgroups, advancing personalized approaches for

PTCL patients.

RESULTS

Establishing a living PTCL PDX biorepository
We implanted 308 PTCLs from fresh or cryopreserved samples,

yielding 102 patient-derived tumor models comprising 88 PDXs

and 14 PDX-derived lines (PDX-Dlines; Figures 1A and 1B;

Table S1) and 3,283 PDX cryopreserved seed samples (median

passage: T4).

The biorepository represents themost commonPTCLsubtypes

(Figure1A).Higherengraftment rateswereseen in relapsed/refrac-

tory PTCL (r/r, 62%; naive, 38%), with a 36% engraftment rate on

average for the most common T/natural killer (NK) entities (PTCL

not otherwise specified [PTCL-NOS], angioimmunoblastic T cell

lymphoma [AITL], and ALCL). Also, rates were not linked to other

parameters (Table S1). Rare entities engrafted less efficiently

(Table S1,<15%) except Monomorphic epitheliotropic intestinal

T cell lymphoma [MEITL] (Figures 1C and 1D). We also generated

six PDXs from two longitudinal samples of the same patient. The

engraftment time ranged from 3 weeks to 10 months (Figures 1E

and S1A–S1H), remaining relatively stable along serial passages,

except for AITL, which displayed progressively longer times over

serial transfers (Figure S1B). Tumors implanted subcutaneously

seldom homed to distant tissues (lungs, liver, and/or spleen),

sometimes without a concomitant expansion at the implantation

site (Figures 1F, 1G, and S1I). Seventy-three of 88 models propa-

gated R2 serial passages without EBV+ (Epstein Barr virus) lym-

phoblastoid CD19+ B cells (EBV-LCLs). Some EBV+ LCLs (1%–

90%) were detected (30 cases); primarily AITL (n = 10) (Table S1)

and prominent expansions (>90%) were also seen (18 samples,

17% of all engraftments). EBV+ LCLs were present intratumorally

in visceral tissues (i.e., kidney, spleen, liver, and lung) and, in most

cases, expandedover serial passages (Figures1HandS1J). EBV+

PDX and samples with no lymphoma expansion (6–9months from

injection) were failures (Figure S1J). Aiming to eradicate EBV+

LCLs, we treated six EBV+ PDXs with the anti-CD19 drug-conju-

gated loncastuximab tesirine (ADCT-402).38 The antibody suc-

cessfully eradicated B cells, but only one PDX was established

and serially propagated (interleukin [IL]129A AITL PDX,

Figures 1H, S1K, and S1L). Similar data were obtained by treating

EBV+ PDX in complement-proficient (Hc1) mice with rituximab

(data not shown).

Lastly, we established fourteen continuous PDX-Dlines using

cytokine-supplementedmedia (with/without IL-2 and IL15) or mu-

rine cancer-associated fibroblasts (CAFs; Figure 1I; Table S1).

PDXs maintain the immunophenotypic and TCR
clonotype profiles of primary PTCLs
PTCL PDX histologically/cytologically resembled their matched

donor samples (Figures 2A and S2A). In 29 cases, mostly AITL

PDX, normal T and B cells (or EBV+ LCLs) were co-mingled

with neoplastic elements, particularly in early passages

(Figures 2B and 2C). PDX lineage fidelity and individual pheno-

types were preserved, as demonstrated by immunohistochem-

istry and immunophenotyping (Figures 2D and S2B). Gene rear-

rangement analysis demonstrated that PDX and matched

primaries share identical T cell receptor (TCR) DNA rearrange-

ments (Tables S1 and S2; Figures 2E, S2C, and S2D). By total

RNA sequencing (RNA-seq), primary and PDX displayed a rich

TCR clonotype representation (Figures S2E–S2F). Explicit a

and/or b TCR lymphoma clonotypes (>5% of the TCR) were

documented in �50% of primary samples, with a higher clonal

representation in PDX (Figures 2E and S2E–S2G).

Since antigen-driven TCR engagement facilitates cell growth

and treatment resistance,39 we assessed the TCR usage and an-

tigen specificity (https://vdjdb.cdr3.net/). We observed a relative

over-representation of selected VDJ (TRA-V29DV5, V9-2, and

V13-1), particularly in EBV+ AITL (Figure S2H). Notably, EBV

transcripts were identified (Figure 2F), corresponding to both

lytic and latent genes (Figure S2I) and, seldom, to HTLV-1 and

HHV6 transcripts (Figure S2J).40 Remarkably, individual pri-

mary/PDX displayed dominant TCR clones expressing canonical

or mismatched TCR CDR3 motifs known to bind EBV peptides

(Figures 2G, S2K, and S2L; Table S2). To extend this prediction,

we estimated the major histocompatibility complex (MHC) class

II binding for multiple EBV peptides (Figure 2H). Next, we

executed a competitive in vitro binding assay showing a high

binding affinity of Epstein barr Nuclear Antigen (EBNA)-3B/4

peptides (IC50: 0.08 mM) to recombinant DRB1 (IL36, Figure 2I).

Lastly, we detected explicit immunoglobulin H (IgH) clones, at

very low frequency in primary tumors (Figure S2M). Exceptions

included rare primary AITL and EBV+ PDX (Figure S2N).

PDXs preserve the transcriptomic landscape of primary
lymphomas
We first compared the transcriptomic profiles of primary (n = 79)

and matched PDX (n = 140; Table S2) by principal-component

analysis (PCA), demonstrating a partial overlap (Figure S3A),

likely due to the tumor content (Figures S3B and S3C) and host

human cells (Figures S3C–S3E). Hence, we performed a surro-

gate variable analysis (see STAR Methods) and established

distinct clusters corresponding to ALK+ ALCL, ALK� ALCL, and

PTCL-NOS/AITL, demonstrating a close correspondence of pri-

mary and PDX (Figures 3A, 3B, and S3F). PTCL-NOS and AITL

were stratified using GeneOntology (GO) enrichment, differential

expression, pathway analyses, and publicly available signatures

(Figures 3C and S3G–S3I), confirming known transcripts in

different subtypes (Figure S3H). As selected biomarkers distin-

guish PTCL subtypes,41,42 we established PDX classifiers for

each subgroupenrichedby knowndifferentially expressedgenes

(Figure S3J). The PDX-Dlines also showed close transcriptional

signatures to matched donor PDX (Figure S3K).

(F) Representative MRI scanning of 4 different organs (lung, kidney, liver, and spleen) of an NSG mouse implanted with the different PDX. Arrows indicate

lymphoma infiltration.

(G) Representative H&E staining of 4 different organs (lung, kidney, liver, and spleen) of NSG mice implanted with the AITL PDX model (magnification 340).

(H) Flow cytometric analysis of EBV+ AITL PDX IL129A before (upper panels) and after CD19-ADC treatment (lower panels).

(I) Schematic representation of PDX-Dline generation strategies.
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Bysingle-cell RNA sequencing (scRNA-seq) (5PDXs, Table S2),

models were individually segregated at cluster resolution, even

within the same entity (i.e., ALK+ ALCL, Figures 3D and 3E). Tumor

clusters were common between primary and PDX (#1 and #2)

(Figures 3F and 3G), and normal human stromal cells were

depleted in PDX (#6 and #8, populated by normal CD8+ T cells

and monocytes, respectively) (Figures 3F and S3L).

Fusion transcripts are common inPTCLand typical to histologic

subtypes.2 We thus searched for chimeric transcripts (see

Methods; Table S3) and identified 4,022 gene fusions across 206

samples. Previously identified fusions were annotated,43–45 as

well as unknown putative tumorigenic fusions involving a

variety of T cell genes (ACADVL-VAV1, MAZ-NF1, VASP-

PPP2R1A, TET3-IMMT, MYL3-SETD2, TOX-MYBL1, IL17RA-

RP11-363L24.3, and SMG1-NFATC3) (Table S3; Figure 3H). In

ACADVL-VAV1, ACADVL was fused in-frame, while VAV1 trans-

lated to a truncated protein lacking its negative regulatory domain

(Figure S3M), reminiscent of other oncogenic VAV1 fusion pro-

teins.46,47 Since Ras signaling can contribute to PTCL pathogen-

esis,48–51 we validated the MAZ-NF1 fusion of an ALK� ALCL

PDX. The predicted outcomewas a truncated NF1 protein lacking

activity (Figures S3N–S3P). Meanwhile, primary and PDX lost the

secondNF1 allele (Figure S3P), leading to the deregulated activa-

tion of Ras.Of note, weobserved the loss of ERK1/2 phosphoryla-

tion (FigureS3Q) and the improvedPDXoutcome in vivo (Figure 3I)

upon selumetinib treatment (AZD-6244, anMEK inhibitor), a com-

pound with limited activity in other PDX-Dlines (Figure S3R).

Since fusion transcripts are informative biomarkers of disease

identity52,53 and serve as surrogates for tracing clonal evolu-

tion,53 we explored their landscape in two models (IL-2 and

IL19), derived from the same donor at different time points

(Figures 3J, S3S, and S3T). PDX displayed several undetectable

fusions in primary samples (IL-2, n = 62, and IL19, n = 68), some

co-shared (n = 36). By quantitative reverse-transcription PCR

(RT-qPCR - n = 9) and Sanger sequencing (n = 3, Figures S3U

and S3V), we confirmed selected fusions in PDX and primary

samples (Figure S3V). Remarkably, emerging fusions in the

relapsed sample (primary IL19) and corresponding PDX sug-

gested the occurrence of clonal trajectories in part shared and

maintained along the diagnostic, PDX samples, and even PDX-

Dlines (Figures S3U and S3V).

PTCL PDXs retain pathogenetic drivers and inter- and
intratumoral heterogeneity
We performed whole-exome sequencing (WES) in 223 samples

(34 primary, 29 normal, and 160 PDX samples and PDX-

Dlines), derived from 49 different models (Table S2). Having as-

sessed the contribution of human andmouse reads (Figure S4A),

copy-number alteration (CNA) demonstrated significant over-

laps between primary and corresponding PDX (Table S4;

Figures 4A and S4B). Globally, PTCL-NOS and ALK� ALCL dis-

played a higher degree of DNA structural alterations (Figure 4B),

including known abnormalities (e.g., 6q21 and 1q+ or 3q31.3+ in

ALK� ALCL) and defects associated with pathogenic alterations

(e.g., PRDM1 and MIR17HG), than other histology.54,55 ALCL

displayed specific gains at 1p36.22 and 19q13.42, occurring

in regions harboring pathogenetic TNFRSF8 (CD30) and

KIR2FDL1/KIR3DL2 genes.56–58

We found a high concordance of single-nucleotide variants

(SNVs) and insertion or deletions (indels) between primary tumors

and matched PDX (Figures S4C and S4D; Table S5) with a higher

median variant allele frequency (VAF) in PDX (50% vs. 40%,

respectively, p < 2.2e�16, t test; Figure S4E). Globally, 3,430

non-synonymous somatic variants were recognized (Table S5),

mostly missense (77%), 11% splice site, 4% stop-gain, 4% in-

frame, and 4% frameshift. A total of 1,582were classified as path-

ogenetic SNVs. These involved chromatin modifiers, JAK-STAT,

and TCR-associated genes (e.g., TET2, DNMT3A, JAK1, STAT3,

RHOA, TP53, andNOTCH1).37,59–62 Previously undescribed puta-

tive tumorigenic variants (e.g., DIAPH1, FAT4, CRIPAK, SH3RF2,

and BCLAF163–67) were detected (Figure 4C). Oncogenic drivers

were enriched in AITL (TET2 and RHOA),68 ALK� ALCL (JAK1

and STAT3),69 and mycosis fungoides [MF] (PLCG1).70 Most mu-

tations were faithfully shared between primary tumors and along

PDXpassages. Conversely, somewere exclusive to either primary

(e.g., KMT2D) or PDX (e.g.,CSF2, GATA3, and ASXL3; Figure 4D)

or emerged along serial PDX passages (AUTS2 and CSF2, Fig-

ure S4F). Higher mutational burdens were observed in ALK�

ALCL, PTCL-NOS, and MF (Figure S4G). Lastly, we screened

104normal/primary/PDX/PDX-Dline samplesbydeepsequencing

and annotated 537 mutations in 450 pathogenetic genes

(Table S2). When we compared WES and deep sequencing ana-

lyses (data not shown), we observed >90% concordance with an

increased VAF of selected alterations in propagated PDX

(Figure S4H).

To explore the evolutionary mutation trajectories, we built a tu-

mor evolutionary directed graph71,72 showing that ancestor muta-

tions usually occurred in STAT3, TP53, IDH2, and KMT2C, fol-

lowed sequentially by those in JAK1, CDK11B, TET2, and

RHOA. Mutations in ACIN1, NOTCH1, DIAPH1, and CSF2 were

mostly acquired along PDX propagation (Figure 4E). We then im-

plemented a clonal evolution analysis on 29/49 models using

Figure 2. PDX faithfully mimics matched primary donor samples

(A) H&E staining of primary lymphomas (green frames) and matched PDX (yellow frames, magnification 403).

(B) EBV in situ hybridization depicting EBV+ lymphoblastoid cells (EBER+) in AITL PDX.

(C) Multiparametric in situ imaging (MISI) of representative AITL lesions derived from diagnostic (lymph node) and patient-matched PDX (lung).

(D) Pie graph reporting the expression of 26 immune-histochemistry (IHC) markers in primary and PDX (T1 to T16) samples. Red: highly expressed, green: low

expressed.

(E) a/b TCR clonal representation of primary and PDX, along serial passages.

(F) EBV positivity among PTCLs.

(G) TCR repertoire against EBV peptides and their mismatched sequences compare to known reference sequences.

(H) Prediction binding of EBV peptides to MHC class II determinants.

(I) In vitro competitive binding assay of EBV tetramers to recombinant DRB1.
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cancer cell fraction (CCF) estimation by ABSOLUTE.73 We classi-

fied a clonal mutation if the CCF was >0.85 with a probability >0.5

and subclonal otherwise. We identified 2,103 clonal and 1,544

subclonal mutations (Table S6) and constructed evolution models

(e.g., T1-T3-T5 and, for selected cases, up to T15).74 All models

showed a major cluster of co-shared mutations among primaries

and PDX (Figures 4F–4H and S4I–S4K), with dominant clones pre-

served over propagations. Minor subclones branched and

expanded along PDX propagations, with some clonal competition

(Figures 4F–4H). Finally, we computed Nei’s genetic distances on

22/29 models to estimate clonal drifting along propagation (Fig-

ure 4I, 4J, and S4L)75 and defined three subgroups based on

low/medium/high evolution rate (average Nei’s score): 14/22

(64%) low (<0.5), 7/22 (32%) median (>0.5 and <1), and only

1/22 (4%) high score (>1). This confirmed the overall stability of

PDX compared to different systems (e.g., glioblastoma;

Figure S4M).

In sum, PDXs maintain primary-matched pathogenetic drivers

and degrees of lymphoma heterogeneity.76

PTCL PDXs recapitulate primary and host
microenvironment interactions
To explore the nature of the PTCL tumor microenvironment

(TME), we took advantage of our methodology24,77 to extract

functional signatures from the crosstalk of TME with cancer

cells (functional gene expression signatures [FGESs]) from

bulk RNA-seq. We first used 24 FGESs to virtually reconstruct

the TME of 845 PTCLs from 16 public datasets and our cohort.

We separated them into four major clusters representing ‘‘lym-

phoma microenvironment’’ categories (Table S7; Figures 5A

and S5A–S5E): ‘‘B cell rich’’ for the abundance of B cells and

B cell trafficking FGES; ‘‘mesenchymal’’ for over-representation

of FGES linked to stromal cells, extracellular matrix (ECM), and

ECM remodeling; ‘‘inflammatory’’ for the presence of FGES

related to macrophages and NK cells; and ‘‘depleted’’ that

overall had the lowest representation of TME FGES. PTCL sub-

groups were distributed across the four TMEs without specific

associations, although each group displayed distinct signatures

and bore different genomic defects (Figure S5F). A survival

analysis on two distinct PTCL patients’ cohorts (n = 253)

showed that the ‘‘depleted’’ TME was associated with poorer

prognosis (uncorrected p = 0.005) (Figure 5B). Remarkably,

the only FGESs overrepresented in the ‘‘depleted’’ TME cases

were related to ‘‘Th2-ILs and GATA3 activation’’ and ‘‘prolifer-

ation rate’’ (Figure 5A) and exhibited the highest proportion of

tumor cells as determined by mutational load (Figure S5G,

p < 0.01 vs. the other categories). Similar data were recently

described in an independent PTCL cohort.78 Next, we per-

formed a multiplex imaging analysis of primary PTCL using

antibodies recognizing different subtypes of T cells, macro-

phages, and stromal elements, confirming the RNA deconvolu-

tion predictions (Figures 5C and S5H).

We extended this approach to PDX models, using converted

mouse FGES (mFGES), and showed the same four TME cate-

gories of primary tumors (Figures 5D and S5F–S5N). Using

only human reads, we performed a clustering analysis of the

PTCLs into 4 functional ‘‘intrinsic’’ T cell phenotypes: Th1

(mostly AITLs and PTCL-NOS), Tfh (AITL), Th2 (PTCL-NOS car-

rying JAK-STAT mutations), and cytotoxic (mainly ALCL) (Fig-

ure S5F). The Th1 and Tfh group frequently displayed TET2,

RHOA mutations, and detectable EBV transcripts. The cyto-

toxic group had the lowest TCR signaling rate and few normal

T cells (Figure S5K), in line with the ALCL low TCR signaling.79

Most samples with high TCR signaling displayed TET2/DNMT

and/or RHOA/PCLG1 defects80; meanwhile, �50% of those

lacking them were EBV+. TCR-negative samples were

conversely enriched in JAK1/STAT3 mutants and/or clustered

among ALCL.2,79 We next showed that TME cell populations

were mostly conserved along PDX passages (Figure 5E), partic-

ularly in ALK+ ALCL, which maintained their cytotoxic pheno-

type, and for most Th2 PDX. Nevertheless, changes were

observed, suggesting some plasticity (i.e., ‘‘mesenchymal’’

and ‘‘B cell-rich’’ TMEs; Figures 5E and S5I). A transition to a

‘‘mesenchymal’’ TME was seen in ALCLs whose tumor content

rapidly increased after engraftment. Other PDXs displayed a

progression to a ‘‘B cell-rich’’ TME (e.g., NY-PTCL-CR, IL33,

and IL98), likely driven by an increased number of EBV-LCLs

(Figures S5I and S5J).81,82

Additionally, we interrogated murine tumor-associated mac-

rophages (TAMs) and CAFs, which increased along PDX

passages (Figure S5M). Both M1-like and M2-like TAMs

expanded in PDX, with an increased M2/M1 ratio (primary:1.53

Figure 3. PDX maintains the inter- and intratumoral heterogeneity of matched lymphoma

(A) PCA of PDX and primary lymphoma-matched samples (AITL, PTCL-NOS, and ALCL) based on the bulk RNA expression levels excluding non-lymphoma reads

in primary samples.

(B) Heatmap and unsupervised hierarchical clustering based on 1,000 top differentially expressed genes of PDX and primary lymphomas belonging to the main 4

PTCL subcategories (AITL, PTCL-NOS, ALK+ ALCL, and ALK- ALCL).

(C) Supervised hierarchical clustering of primary and PDX based on 12 known publicly available signatures stratifying different PTCL entities

(A: PMC2817630_AITL, B: PMC2817630_ATLL, C; PMC4014836_TBX21/GATA3, D: PMC20159827_ALK+, E: PMC2817630_ALK+, F: PMC4014836_ALK+/�, G:

PMC4014836_AITL, H: PMC4014836_ATLL, I; PMC4014836_ATLL, J: PMC2817630_CT_PTCL, K; PMC6161771_DUSP22, and L: PMC4014836_ENKTL).

(D) Uniform manifold approximation and projection (UMAP) clusters annotation based on single-cell RNA-seq expression of PTCL-NOS and AITL (IL-2 and

IL138A) and ALCL (IL69, IL79 and IL89) PDX.

(E) Dot plot representation of top gene transcripts in each UMAP cluster of the PDX models sequenced by single-cell RNA-seq.

(F) UMAP cluster annotation based on single-cell RNA-seq expression (IL138A primary and T3 PDXmodel). Cell types have been annotated on the right part of the

graph.

(G) Hallmark analysis of selected differentially expressed pathways among three tumor clusters of IL138A primary and PDX, based on single-cell RNA-seq

expression data. Cluster 0 was present in both primary and PDX, while clusters 1 and 2 were enriched in IL138A PDX vs. the correspondent primary.

(H) Heatmap reporting fusions of primary and PDX samples belonging to different PTCLs. Only chimeras with a pathogenetic score R0.7 are depicted.

(I) Antitumoral effect of AZD-6244 in TO-ALCL-Belli PDX model (n = 8 mice/group). Error bars represent standard deviations.

(J) Circle pot depicting fusion landscapes of IL-2 and IL19 primary and PDX samples.
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vs. PDX: 2.27; Figure 5F). Regarding CAFs, signatures corre-

sponding to ‘‘myCAF’’ and ‘‘iCAF’’ (Table S7) were also en-

riched (Figures 5G, 5H, and S5N).

As a functional validation, murine PDX stromal and tumor

endothelial cells improved the survival of cocultured lym-

phoma cells (Figures 5I and S5O).83,84 Cocultured CAFs upre-

gulated biogenesis, migration, cell mobility, and DNA replica-

tion pathways (Figure 5J), mimicking the phenotype of freshly

isolated mesenchymal stromal cells (MSCs; Figure 5K), a

phenotype partially lost when cultured alone. Remarkably,

freshly isolated CAFs from matched tumors or in vitro re-

educated-CAFs more efficiently rescued PDX under serum

deprivation (Figures 5L and 5M). Finally, PDX-CAFs improved

the viability of 2 models (IL-2 and IL142A) in co-culture drug

screening platforms (Figures 5N and 5O), including com-

pounds targeting PTCL driver pathways (Figure 5O). This ef-

fect was only seen with lymphoma-matched PDX-MSCs (Fig-

ure S5P), suggesting a lymphoma-specific education. We next

identified putative pathways that mediated the host rescue, as

depicted in Figure S5Q, where CAF rescue was partially abro-

gated with crizotinib (navitoclax/ABT263, belinostat, etc).

Finally, we found that mouse mesenchymal cells (MS-5) pro-

tected ALCL cell lines from brentuximab-vedotin (BV)-induced

death (Figure S5R).
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I J

Figure 4. PTCL PDX models mutational landscape and clonal evolution

(A) Global copy-number variation (CNV) analysis of primary and PDX along propagation.

(B) Chromosome view of genes included in the recurrent deleted or amplified genomic regions in PTCL-NOS and ALCL (ALK+ and ALK�).
(C) Mutational landscape of PTCL primary and PDX samples assessed byWES. Variant sites with read depth lower than five aremarked as NA. For the sample ID,

‘‘P’’ stands for primary tumors.

(D) Ternary plot of mutation frequency in recurrently mutated genes, comparing primary tumor-specific (left, green), PDX-specific (right, red), and shared (top,

blue) alterations. The size of each node represents the mutation frequency.

(E) PDX tumor evolutionary directed graph of gene mutations. Arrows show the order in which mutations occur. The size of each node corresponds to the

frequency of mutations.

(F–H) Tumor evolution models of NY-ALCL-SG, NY-AI-AM, and TO-ALCL-BELLI PDX models. Fish plots (bottom panels) show dynamic changes in CCF of each

mutation cluster along serial passages, as depicted in the inferred phylogenetic trees (top panels).

(I) Nei’s genetic distance indicates the global evolution score of PDX models.

(J) Nei’s genetic distance indicates the global evolution score of PDX derived from different PTCL entities. Error bars represent standard deviations.
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Figure 5. The microenvironment of primary and PDX defines distinct subgroups of PTCLs

(A) Heatmap of the activity scores of 20 FGES and 4 signaling pathways (x axis) denoting four major TME clusters of primary PTCL (n = 845). In each dataset,

signatures weremedian scaled using median andMAD (median absolute deviation) calculated only for samples with AITL or PTCL-NOS. MFP (microenvironment

functional phenotype) portraits were predicted by Louvain clustering (with a threshold of closest points 0.25) within 20 signatures. Samples were sorted by MFP

and by diagnosis and for each MFP and diagnosis by proliferation rate increasing. The bottom four molecular pathways were calculated by Progeny.

(B) Kaplan-Meier models of OS according to the PTCL TME category.

(C) TME annotation by multiplex analysis of PDX.

(D) Heatmap of the activity scores of 20 FGES (x axis) denoting four major TME clusters of PDX; signature scores (calculated by single sample Gene Set

Enrichment Analysis - ssGSEA - algorithm) were median scaled for each biopsy site separately taking median and MAD only from AITL and PTCL-NOS samples.

Oncoplot below the heatmap depicts mutations, ALK, and EBV status. Color palettes on the top indicate MFP, biopsy site, T-cell phenotype, and diagnosis for

each sample.

(E) Left: Sankey plot showing changes in T differentiation throughout primary and three passages of PDX. Right: plot showing changes in MFP subtypes

throughout primary and three passages of PDX.

(F) Proportion of macrophages M1 or M2 enriched in PDX by FGES. Error bars represent standard deviations (*p < 0.05; **p < 0.001; ***p < 0.0001).

(G) The proportion of myCAF enriched in selected PDX subtypes by FGES. Error bars represent standard deviations (*p < 0.05; **p < 0.001; ***p < 0.0001).

(H) The proportion of iCAF enriched in PDX by FGES. Error bars represent standard deviations (*p < 0.05; **p < 0.001; ***p < 0.0001).

(I) Barplot of apoptotic lymphoma cells coculturedwith andwithout stromal cells (STCs). Data are representative of three replicates. Error bars represent standard

deviations.

(J) Gene Ontology analysis indicates the biological processes enriched in educated vs. not-educated SCTs. Error bars represent standard deviations.

(K) Unsupervised hierarchical clustering of the top 100 differentially expressed genes in not-educated (cultured in vitro >3 days) and (re)educated (freshly isolated

or co-cultured in vitro with PTCL cells >3 days) STCs isolated from PDX.

(L) Percentage of viable IL-2 PDX cells cultured in stress conditions alone (red bar) or cocultured with STCs isolated from different PDXs. Data are representative

of three replicates. Error bars represent standard deviations.

(M) Percentage of viable MT05 PDX cells cultured in stress conditions alone (red bar) or cocultured with STCs isolated from different PDXs. Data are repre-

sentative of three replicates. Error bars represent standard deviations.

(N) Barplots reporting the delta of the specific cell death of PDX-Dlines (IL-2 and IL142A) exposed to 40 drugs with or without STCs (72 h at 1 mM).

(O) Barplot showing viable PTCL PDX cells cocultured with STCs or cultured alone in the presence of targeting agents (72 h). Data are representative of three

replicates. Error bars represent standard deviations.
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Therapeutic responses are assessed in PTCL PDX
We first examined the therapeutic prediction of six PDXs

(3 ALK+ ALCLs, 1 PTCL-NOS, and 2 ALK� ALCLs) performing

a high-throughput in vitro drug screening (Figure S6A) targeting

�634 proteins (Table S8; Figure 6A), demonstrating a high repro-

ducibility among replicates (Figure S6B) and along serial propa-

gations (Figures 6A–6C and S6C). Therapeutic responses

differed according to the subtype (Figures 6B and 6C). Most

compounds had little effect. However, a subgroup of 19 drugs

showed higher efficacy across samples (Figure 6C). We then

correlated the gene expression profiles with cell viability after

drug exposure and identified predictive signatures to belinostat

(Figures S6D and S6E) and ruxolitinib (R = 0.97, p = 0.033)

(Figures 6D–6G, S6D, and S6F). Next, we expanded the

screening to PDX-Dlines with 53 drugs, including the 30 most

active compounds within the 433-drug library and 23 drugs

from clinical trials (Table S9; Figure 6H), establishing dose-

response curves (Figures 6I and S6G). Also, PDX-Dlines dis-

played individual patterns of responses to the ALK inhibitor

(ALKi) crizotinib (TO-ALCL-DN03, ALK+ ALCL) and the JAK inhib-

itors (JAKi) ruxolitinib, tofacitinib, and cerdulatinib (IL-2, JAK1

mutant; Figure 6H), in line with their genetic alterations.

Conversely, cytotoxic chemotherapeutics (daunorubicin, SN38,

and vincristine), HDAC inhibitors (romidepsin, and panobino-

stat), a survivin inhibitor YM155, proteasome inhibitors (bortezo-

mib and CEP18870), an aurora-kinase inhibitor (tozasertib), and

a CDK9 inhibitor (AZD-4573) were pan-active, even at low

concentrations.

Seeking drug combination candidates, we developed a deep

learning-based algorithm named DeepPTCL (see Methods).

Having demonstrated a consensus between the The Cancer

Genome Atlas cell lines and PTCL (see Methods; Figure S6H),

we screened 8 of the most effective drugs for synergies (irinote-

can, romedepsin, duvelisib, pralatrexate, AZD-4573, cerdulati-

nib, azacytidine, and crizotinib) on PDX-Dlines (IL-2, IL89,

IL142A, TO-ALCL-DN03, and TO-ALCL-Belli). DeepPTCL pre-

dicted 6 top synergy combinations with duvelisib (Figure 6J),

some further validated in vitro (duvelisib/cerdulatinib in

JAK1mut IL-2 PDX-Dline and duvelisib/venetoclax in IL-2 and

IL142A PDX-Dlines, carrying PTEN and TP53 deletions) (Fig-

ure 6K; Figure S6I). Lastly, we linked responses of representative

combinations to the mesenchymal TME within the FGES sub-

types (Figure S6J).

PTCL PDX pre-clinical trials in vivo

To assess responses to standard and innovative drugs/combi-

nations, we selected 17 PTCL PDXs (10 naive and 7 refractory;

Figure 7A; Table S9).

First, we tested whether PDX recapitulated patients’ re-

sponses (Table S10; Figures 7B, 7C, and S7A–S7C) to (1)

CHOP, demonstrating that TO-ALCL-DN03 responded in line

with the matched patient (partial response, Figures S7D–S7F)

whileMT05 and TO-ALCL-Marc were refractory as the donor pa-

tients, and (2) targeted agents. These latter experiments showed

that JAK1mut IL-2 PDX was refractory to ruxolitinib and romidep-

sin, as its corresponding patient (Figure 7C), and the NPM-ALK+

IL69—derived from a patient refractory to CHOP, BV, and crizo-

tinib—did not also show significant responses (Figure 7B).

Similar responses were documented in the IL79 ALK+ ALCL

model (Figure S7G). Conversely, the ALKi-naive TO-ALCL-

DN03 was eradicated by crizotinib (Figure S7H), while NY-

ALCL-SG showed little-to-no response to crizotinib and ceritinib

(respectively) but was partially controlled by BV (Figure 7D). For

the ALKi-naive NY-ALCL-SGC, we observed a significant

response to crizotinib followed by a relapse; this latter pheno-

type was controlled by the duvelisib-crizotinib combination (Fig-

ure 7D).85 As STAT3 powers some ALK� ALCL,69 we treated a

naive STAT3+ ALCL PDX with baricitinib, a JAK1/JAK2 inhibitor,

using two different dosing schedules. Growth inhibition was

partially achieved in BID-treated mice, demonstrating that pro-

longed and significant suppression of pSTAT3 is required for

improved clinical outputs (Figure S7I).

Afterward, we harnessed multiple PDX to design precision-

medicine-driven pre-clinical trials by integrating phenotypic,

genomic, and drug screening data. We chose a debulking

approach using irinotecan, which was effective in the in vitro

Figure 6. Ex vivo PDX drug responses

(A) Heatmap showing the magnitude of the cross-correlation of 6 PDX freshly isolated cells exposed to the drug library.

(B) Principal-component analysis (PCA) of 19 PDX freshly isolated cells based on the responses to 433 drugs. Circled dotted lines group together samples of

PTCL subtype.

(C) Heatmap showing the responses of 6 PDX models (19 freshly isolated cell samples) to 433 drugs. Dendrograms on the left and bottom show unsupervised

hierarchical clustering of drugs and PDX along the axis of maximum variation (ward) for the Euclidean distances. The dot plot denotes the average drug viabilities

per PDX across 433 drugs (top). Dot plot shows the average sample viabilities per drug (right).

(D) Dot plots showing the correlation between the expression levels of JAK1 and JAK2 across PTCL subtypes with cell viability after ruxolitinib treatment (72 h,

1 mM). The correlation coefficients and p values are indicated.

(E) Heatmap and unsupervised clustering depicting the gene expression within the JAK-STAT pathway. Genes were selected based on the correlation between

the expression and viability of samples treated with ruxolitinib (1 mM, 72 h). The viability values are indicated in the upper color bars.

(F) Heatmap and unsupervised clustering depicting the gene expression from a regression analysis obtained by modeling the cell viabilities as a function of the

PTCL subtypes plus each gene expression.

(G) Dot plot showing the predicted vs. actual cell viabilities, with correlation and p value across PTCL subtypes. The prediction derives from the regression

analysis in Figure 5F.

(H) Heatmap displaying the response of five PDX-Dlines to 40 compounds. Specific cell death is reported in percentage.

(I) IC50 assessment in five PDX-Dlines treated in vitro with increasing concentrations of compounds (day 3 and 6).

(J) Boxplot indicating the predicted synergy score by the DeepPTCL algorithm for the indicated drug combinations across PTCLs. Error bars represent standard

deviations.

(K) Percentage of viable IL-2 and IL142A PDX-DLines cultured in the presence of the indicated concentrations of duvelisib and cerdulatinib (IL-2) or duvelisib and

venetoclax (IL142A) for 72 h. Data are representative of three replicates. Error bars represent standard deviations.
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screening (Figure 6C), followed by chemo-free approaches

(Figures 7E and S7J). Irinotecan has some activity in PTCL pa-

tients86 and in relapsed/refractory non-Hodgkin patients.87–89

In detail, CD30+ ALCL PDX (IL69, IL79, MT05, and DN03) were

challenged with irinotecan and BV (Figure 7E), while the IL-2

PTCL-NOS PDX was treated with irinotecan and ruxolitinib (Fig-

ure S7J). Combinations either eradicated and/or yielded

improvement in survival. Finally, we tested effective in vitro

drugs (Figure 6H), either as single agents or in combinations

(Figures 7F, S7K, and S7L). Pralatrexate proved to be the most

effective, improving OS and, in some cases, leading to lym-

phoma eradication as a single agent (IL142A, Figure S7K), or in

combination with romidepsin (IL-2, Figure 7F) or duvelisib

(IL107, Figure S7L). Conversely, azacitidine (Figures 7G and

S7M)90,91 decreased lymphoma growth (Figures 7G and S7M–

S7P) and prolonged survival (Figure S7P). We next combined

CDK9 inhibitor (AZD-4573)92 with cerdulatinib,93 following a

13 13 1 pre-clinical design,26 in 9 PDXs (Figure 8A). As a single

A
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D
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G

Figure 7. The mouse hospital and pre-clinical trials

(A) PTCL pre-clinical trials overview and Kaplan-Meier plots representative of the overall survival of PDX models.

(B) Comparison of IL69 patient and matched PDX responses to CHOP, brentuximab, and crizotinib (n = 8–10mice/group). Top panel: IL69 patient clinical history.

Error bars represent standard deviations. p values were estimated with adjusted t test (*p < 0.05; **p < 0.001; ***p < 0.0001). Kaplan-Meier curve of the OS (right

panel, log rank test, p < 0.0001).

(C) Comparison of IL-2 patient andmatched PDX responses to ruxolitinib and romidepsin (n = 8–10mice/group). Top panel: IL-2 patient clinical history. Error bars

represent standard deviations. Kaplan-Meier curve of the OS (right panel, log rank test, p = ns: >0.05).

(D) Left panel: antitumoral effect of crizotinib alone or in combination with duvelisib in NY-ALCL-SGC PDX (n = 8–10mice/group). Right panel: antitumoral effect of

crizotinib, brentuximab, and ceritinib in NY-ALCL-SG PDX (n = 8–10 mice/group). Error bars represent standard deviations.

(E) Antitumoral effect of irinotecan, brentuximab, or combination in ALCL PDX (MT05: cutaneous ALCL - cALCL-, IL69, DN03; IL79: ALK+ ALCL; IL-2: PTCL-NOS).

Kaplan-Meier curves of the OS (right panel, log rank test, p < 0.0001). Individual biological and technical replicates are depicted as single lines.

(F) Antitumoral effect of pralatrexate, duvelisib, and romidepsin or combinations in IL-2 PTCL-NOS PDX (n = 8–10 mice/group). Error bars represent standard

deviations (*p < 0.05; **p < 0.001; ***p < 0.0001). Kaplan-Meier curves of the OS (right panel, log rank test, p < 0.0001).

(G) hCD45 IHC staining of IL129A PDX treated with vehicle or azacytidine. Left panels: mice organs (lungs, kidney, spleen, liver, and heart). Right panels: lungs

(40x).

Please cite this article in press as: Fiore et al., A patient-derived T cell lymphoma biorepository uncovers pathogenetic mechanisms and host-related
therapeutic vulnerabilities, Cell Reports Medicine (2025), https://doi.org/10.1016/j.xcrm.2025.102029

Cell Reports Medicine 6, 102029, April 15, 2025 13

Article
ll

OPEN ACCESS



agent, cerdulatinib showed a modest effect in 3/9 models and

significant readouts in only 2/9 models. AZD-4573 was more

potent, with a modest effect in 2/9 and superior response in

4/9 models (Figures 8A–8C and S8A). Their combination yielded

improved responses in 5/9 models, extending survival (pairwise

log rank p = 0.019) (Figures 8C, S8A and S8B). By bulk RNA-seq,

A

B C

D

E

F

G

H

I

Figure 8. PDX pre-clinical trials support the implementation of drug combinations and immune-based regiments

(A) Swimmer plot of PDX models (n = 9 and 36 mice) treated with vehicle, cerdulatinib, AZD-4573, or combination.

(B) Barplot depicting PDX tumor size across time points (vehicle, cerdulatinib, AZD-4573, and combination). p values were calculated with one-way ANOVA with

adjustment for multiple comparisons *: p < 0.05.

(C) Kaplan-Meier plots of the global OS of PDX models (n = 9 and 36 mice; log rank test, p = 0.017).

(D) Heatmap depicting the top differentially expressed genes in PDX model responders and not-responders to AZD-4573 in vivo treatment.

(E) Flow cytometry analysis of TO-ALCL-DN03 (above panels) and IL-2 (below panels) PDX-Dlines cocultured with CART30 cells at the indicated target (red dots)-

to-effector (green dots) ratio.

(F) Antitumoral effect of CART5 cells alone or combinations with nivolumab in IL-2 PTCL-NOS PDX (n = 6–10 xenografts/group). Error bars represent standard

deviations.

(G) Antitumoral effect of CART30 cells alone or combinations with nivolumab in NY-ALCL-SG ALK+ALCL PDX (n = 6–10 xenografts/group). Error bars represent

standard deviations.

(H) Detection of untransduced - UTD -and CART30 within the peri-tumor and tumor masses (CART30 is depicted in green and NY-ALCL-SG cells in red).

(I) Multiparametric analysis demonstrates the positive PDL1 expression of NY-ALCL-SG (red color), and CD2 (green) and PD1 (low/partial white) of CART30 cells.

Please cite this article in press as: Fiore et al., A patient-derived T cell lymphoma biorepository uncovers pathogenetic mechanisms and host-related
therapeutic vulnerabilities, Cell Reports Medicine (2025), https://doi.org/10.1016/j.xcrm.2025.102029

14 Cell Reports Medicine 6, 102029, April 15, 2025

Article
ll

OPEN ACCESS



we observed that non-responders had an upregulation of

TCR signaling, and conversely, responders were enriched in

genes regulating migration, cytoskeleton, and cell interactions

(Figure 8D).

Lastly, we assessed the efficacy of CAR-T in PTCL PDX, a still

largely unexplored field.94,95 We took advantage of two CART

products specifically targeting CD30 or CD5 (CART30 and

CART5, respectively), the latter engineered to lack endogenous

CD5 expression, avoiding fratricide effects and with enhanced

antitumor activity (see Methods96). Both products were effective

in vitro (CART5 against IL-2, a PTCL-NOS, and CD5+/CD30�

and CART30 against TO-ALCL-DN03, an ALK+ALCL, and

CD30+/CD5�) (Figures 8E, S8C and S8D). In vivo, CART5

controlled lymphoma growth, especially in combination with ni-

volumab (Figure 8F). Meanwhile, CART30 or CART30/nivolumab

combination showed a partial effect (Figure 8G). This was likely

due to a defective intratumoral infiltration (Figures 8H and S8E)

and disrupted crosstalk, as shown by multiplex imaging. Indeed,

ALCL cells were strongly PDL1+, largely excluding PD1+ and

EOMES+CART at lymphoma periphery (Figure 8I) and distant lo-

cations (i.e., spleen; Figure S8F).

DISCUSSION

This study establishes the largest available PDX biorepository for

PTCL, offering a robust pre-clinical resource to study tumor

evolution, drug resistance, and personalized therapies. PDXs

faithfully replicate primary tumor characteristics, including histo-

pathology, clonality, genomic, transcriptomic, and drug suscep-

tibility, making them an invaluable resource for understanding

PTCL pathogenesis.

PDX fidelity and drifting along propagation are still a matter of

debate.30,33,97 Here, we proved that PDXs closely matched pri-

mary samples, displaying identical TCR rearrangements and re-

taining the same driver mutations/copy-number variation (CNV)

and gene expression patterns. Nevertheless, distinct subclones

were detectable with the acquisition of non-random defects in a

stepwise fashion (i.e., loss of TET2 and DNMT3a) and the acqui-

sition of mutations (i.e., RHOA, IDH2, or NOTCH1/4 in ALCL and

AITL PDX). This supports the model of stepwise T cell transfor-

mation, defining preferential trajectories/pathways driven by

intrinsic defects. These findings feature the relevance of PTCL

PDX to inform the potential evolutionary trajectory of human tu-

mors. Along the same lines, we discovered genomic aberrations

(e.g., ACADVL-VAV1 and MAZ-NF1) converging on specific

pathways and propelling T cell transformation. These findings

support the implementation of agents selectively targeting

downstream effectors (STAT3, IRF4 PROTACs, etc.). Strikingly,

PTCL PDX and PDX-Dlines maintained a significant subclonal

heterogeneity, a feature often lost by conventional cell lines,

providing a better representation and higher predictive po-

wer.17,98 We took advantage of this predictive potential by

comparing, via a deep learning model, PTCL PDX transcriptional

signatures with those of the Cancer Cell Line Encyclopedia, to in

silico predict and in vitro validate drug combinations.

Personalized treatments require cancer genomic stratifica-

tion,99,100 providing a more granular landscape and pinpointing

the role of the microenvironment.24,101 Here, we proved that

PTCL and matched PDX can be stratified by microenvironment

functional signatures (FGESs) derived by lymphoma-host

cognate interactions. This stratification is of prognostic rele-

vance, with the ‘‘Th2’’ subgroup (so-called Th2/GATA3, over-

activating the PI3K pathway) bearing the most unfavorable

outcome. Similar data were recently presented in an indepen-

dent cohort.78 Strikingly, despite the paucity of the PDXmicroen-

vironment, the host elements’ compositions somehow recapitu-

lated the PTCL landscapes, supporting a model predicting the

education of the host by lymphoma elements.102–105 PDX cells

could also instruct stromal remodeling in vitro, establishing pro-

survival niches with drug-counteracting capabilities. This model

allows the functional validation of host-mediated protumorigenic

mechanisms and testing of ad hoc regimens strategies.106–108

Considering the limited array of intrinsic druggable liabilities,

we believe that targeting the lymphoma microenvironment will

become of pivotal importance in future studies.

Finally, PDXs are emerging as a powerful tool in clinical

oncology for investigating rare tumors and neoplasms,109–111

such as PTCL.12,17 We believe that the future/systematic gener-

ation of PDX from patients enrolled in clinical trials will allow the

direct comparison of PDX and patients’ responses, faster PDX-

based predictions, and the possibility to assign/switch patients

to the most effective therapeutic arms.32,111 Here, we performed

pre-clinical trials using experimental drugs (mostly derived from

drug screening approaches and/or in silico predictions) and

proved their efficacy as single agents or combinations. Also,

we proved that immune-based CAR-T strategies (CD5KO-

CART5 and CART30) can be explored and validated in

PTCL PDXs.

In summary, PDXs provide a compelling opportunity to foster

the translation of drug and immune-based strategies from the

bench to the bedside.24,112 Our biorepository provides a

resource for PTCL research and serves as a pre-clinical platform

for testing novel therapies. By integrating genomic, transcrip-

tomic, and drug response data, this study advances precision

medicine for PTCL patients.

Limitations of the study
Despite the significance of our findings, several limitations must

be acknowledged.

Limited immune system representation

PDX models lack a functional immune system,25,111 limiting the

evaluation of immunotherapies, including CAR-T and checkpoint

inhibitors. Thus, studies should explore humanized mouse

models to address this limitation.

Engraftment success varies

�36% of PTCLs successfully engrafted, with lower rates for rare

subtypes. We believe that tissue availability and technical (tissue

amount/appropriateness) and biological features of rare lym-

phomas (individual and heterogeneous genotypes and host re-

quirements) partially explain these failures.113,114 To improve

success, we employed b2/MCH class I-class II knockout

mice to lessen graft versus host disease (GVHD)-like reactions,

which can jeopardize engraftments.115 Further optimization

(e.g., IL15-NSG mice) did not improve NK/T PTCL engraftment,

demonstrating that defined/multiple signals are required, hardly

overcome by individual engineered models. We found liability in
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the emergence of EBV-transformed cells116 (especially in AITL),

rarely controlled by anti-CD19-ADC (Antibody-Drug Conjugate)

or rituximab in NSG Hc1 mice, in contrast to previous studies

with solid cancers.117,118 This predicts that EBV+ and/or B cells

may not be simply bystander elements but can contribute to the

early stage of transformation and/or sustain lymphoma growth/

survival.119 Thismodel is in line with the EBV-peptide recognition

(EBNA LMP1 etc.) by lymphoma/leukemia TCR/MHC class I

complex and TCR triggering. These data extend the putative

pathological role of B cells in the genesis and maintenance of

AITL.120

Microenvironment changes over passages

While PDXs retain key tumor features, some human host compo-

nents diminish over serial passages, affecting tumor-host inter-

actions. Nevertheless, as for other PDXs,24,121,122, functional

similarities between human and mouse TME and the protumori-

genic role of CAFs were observed. Future work taking advantage

of co-culture systems and engineered microenvironments is

required to dissect the mechanisms of action.

Deep learning therapy prediction requires validation

The DeepPTCL algorithm successfully predicted effective drug

combinations, fostering future (pre)clinical studies in patients

before entering into clinics.

Clinical translation of PDX findings

While PDX drug responses nicely correlated with patient out-

comes, the implementation of PDX in prospective clinical trials

is needed for the translatability of our findings. We hope that

new clinical trials will include the utilization of patients’ samples

for the generation of PDX and, thus, the future design and valida-

tion of broader PTCL therapeutic strategies.
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YM155 Selleckchem S1130

Ficoll-Paque PLUS Cytiva 17144003

Trypan Blue Sigma Aldrich T10282

RPMI 1640 Medium GibcoTM 11875093

DMEM Medium ThermoFisher Scientific C11965092

Phosphate Buffered Saline (1X) ThermoFisher Scientific 20021–027

Fetal Bovine Serum; Heat inactivated Corning 35-011-CV

Ethylenediaminetetraacetic acid (EDTA) 0.5M VWR E522-100ML

Penicillin-Streptomycin-Glutamine (100X) Gibco/Invitrogen 15140–122

Normocin Invivogen ant-nr-1

Gemcitabine Selleck Chemicals S1714
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mitomycin C Sigma-Aldrich M4287

0.25% Trypsin-EDTA GibcoTM 25200056

Collagenase Type IV Sigma-Aldrich C5138-5G

Accutase cell dissociation reagent ThermoFisher Scientific A1110501

Cell strainer, 100mm, filter Corning 431742

Cell strainer, 70mm, filter Corning 431751

Cell strainer, 40mm, filter Falcon, Fisher Scientific C352340

Recombinant Human IL-2 R&D systems 202-IL

Recombinant Human IL-7 R&D systems 207-IL-025

Recombinant Human IL-15 R&D systems 247-ILB

DNase I Worthington Biochemical LS002007

LB agar Lennox Gibco 244520

Trizol ThermoFisher 15596018

SYBRTM Select Master Mix Applied Biosystems 4472897

EBER probes Leica ISH5687-A

CellTraceTM CFSE Cell Proliferation Kit Invitrogen C34554

CellTraceTM Violet Invitrogen C34557

Critical commercial assays

SureSelect Strand-Specific RNA Library Agilent

Preparation Kit

Agilent G9691A

TruSeq� Stranded Total RNA Library Prep Human/

Mouse/Rat

Illumina 20020597

SureSelectXT Human All Exon 50 Mb v4 Kit Agilent 5190–4632

SureSelectXT Human All Exon 50 Mb v5 Kit Agilent 5190–6209

DNeasy Blood & Tissue Kit Qiagen 69504

RNeasy Mini kit Qiagen 74106

Qubit dsDNA HS and BR Assay Kits Thermo Fisher Scientific Q32851

Bio-Rad protein assay kit Bio-Rad Laboratories 5000001

PCR Mycoplasma Detection Kit - Quantity:

100 Reactions

Applied Biological material G238

CD3 MicroBeads, human Miltenyi Biotec 130-097-043

CD19 MicroBeads, human Miltenyi Biotec 130-050-301

TCRB Gene Clonality Assay Invivoscribe 12050011

IGH + IGK B-Cell Clonality Assay Invivoscribe 11000031

ChromiumTM Next GEM Single Cell 50 Library and

Gel Bead Kit v1.1

10x Genomics 1000165

ChromiumTM Single Cell 50 Library Construction Kit 10x Genomics 1000020

Deposited data

Raw Data Files from RNA-seq This paper - SRA SRA: PRJNA1214670

Raw Data Files from WES This paper - SRA SRA: PRJNA1198080

Raw Data Files from scRNASeq This paper - SRA SRA: PRJNA1218277

WES data Nat Genet Da Silva Almeida 2015 https://www.nature.com/

articles/ng.3442#Sec17

WES data Nat Genet Sakata-Yanagimoto 2014 https://www.nature.com/

articles/ng.2872#Sec24

WES data Nat Genet Choi 2015 https://www.nature.com/

articles/ng.3356#Sec34

WES data Mod Pathol 2020 Laginestra https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC6994417/
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WES data Nat Genet Kataoka 2015 https://www.nature.com/articles/

ng.3415#Sec45

WES data Frontiers in Oncology Mirza 2020 https://www.frontiersin.org/

articles/10.3389/fonc.2020.00514/full

WES data Nat Genet Jiang 2015 https://www.nature.com/

articles/ng.3358

WES data Cancer Cell Crescenzo 2015 https://www.cell.com/cancer-cell/

fulltext/S1535-6108(15)00094-

X#secsectitle0015

WES data Palomero, Nat Genet. 2014 https://www.nature.com/articles/

ng.2873#Sec26

Targeted genomic Schatz, Hortwitz, Weinstock

Leukemia 2014

https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC4286477/table/

tbl1/?report=objectonly

Targeted genomic Yoshida, Weinstock Blood 2020 https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC7180081/

Targeted genomic Nat Genet Sakata-Yanagimoto 2014 https://www.nature.com/articles/

ng.2872#Sec24

Targeted genomic Kataoka, Nat Genet. 2015 https://www.nature.com/articles/

ng.3415#Sec44

Targeted genomic Nat Genet Jiang 2015 https://www.nature.com/articles/

ng.3358

Targeted genomic Cancer Cell Crescenzo 2015 https://www.cell.com/cancer-cell/

fulltext/S1535-6108(15)00094-

X#secsectitle0015

RNA_Sequencing data EGA EGA: EGAS00001001296

RNA_Sequencing data dbGaP dbGaP: phs000689

RNA_Sequencing data SRA SRA: SRP049695

RNA_Sequencing data SRA SRA: SRP029591

RNA_Sequencing data SRA SRA: SRP099016

RNA_Targeted data NCBI GEO GEO: GSE58445

RNA_Targeted data NCBI GEO GEO: GSE45712

RNA_Targeted data NCBI GEO GEO: GSE19069

RNA_Targeted data NCBI GEO GEO: GSE90597

RNA_Targeted data NCBI GEO GEO: GSE6338

RNA_Targeted data NCBI GEO GEO: GSE36172

RNA_Targeted data EMBL-EBI EBI: E-TABM-783

RNA_Targeted data NCBI GEO GEO: GSE65823

RNA_Targeted data NCBI GEO GEO: GSE118623

RNA_Targeted data EMBL-EBI EBI: E-TABM-702

RNA_Targeted data NCBI GEO GEO: GSE78513

RNA_Targeted data NCBI GEO GEO: GSE51521

RNA_Targeted data NCBI GEO GEO: GSE14317

RNA_Targeted data NCBI GEO GEO: GSE80631

RNA_Targeted data NCBI GEO GEO: GSE19067

RNA_Targeted data NCBI GEO GEO: GSE20874

Experimental models: Cell lines

TO-ALCL-Belli PDX-Dline This paper N/A

TO-ALCL-DN03 PDX-Dline This paper N/A

TO-ALCL-MARI PDX-Dline This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

IL2 PDX-Dline This paper N/A

IL69 PDX-Dline This paper N/A

IL79 PDX-Dline This paper N/A

IL86 PDX-Dline This paper N/A

IL89 PDX-Dline Fiore, Cappelli et al. Cancers

2020123
https://pubmed.ncbi.nlm.nih.gov/

32560455/

IL104 PDX-Dline This paper N/A

IL135A PDX-Dline This paper N/A

IL142A PDX-Dline This paper N/A

IL 223B PDX-Dline This paper N/A

IL 228 PDX-Dline This paper N/A

COH1 PDX-Dline This paper N/A

MS-5 cell line DSMZ ACC 441

SUPM2 cell line DSMZ ACC 509

L82 cell line DSMZ ACC 597

MAC1 cell line Expasy CVCL_H631

TLBR1 cell line DSMZ ACC 904

Experimental models: Organisms/strains

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ The Jackson Laboratory 5557

NOD.Cg-B2mtm1Unc Prkdcscid Il2rgtm1Wjl/SzJ The Jackson Laboratory 10636

NOD.Cg-Prkdcscid H2-K1b-tm1Bpe H2-

Ab1g7-em1Mvw H2-D1b-tm1Bpe Il2rgtm1Wjl/SzJ

The Jackson Laboratory 025216

NOD.Cg-Hc1 Prkdcscid Il2rgtm1Wjl/SzJ The Jackson Laboratory 030511

Patient-derived xenografts (PDX) This paper Table S1

Oligonucleotides

Primers for RTqPCR This paper Table S12

Software and algorithms

Excel 2016 Microsoft https://www.office.com/

GSEA (4.1.0) Subramanian et al. 2005 https://www.gsea-msigdb.org/

gsea/index.jsp

Halo Indica labs https://www.indicalab.com

STARTRAC Zhang et al., 2018b https://github.com/Japrin/STARTRAC

STAR aligner v2.6.1 Dobin et al., 2013 https://github.com/alexdobin/STAR

DiVa V8.0.1 BD Biosciences https://www.bdbiosciences.com/

en-eu/products/software/instrument-

software/bd-facsdiva-software

FlowJo v10.7.1 FlowJo, LLC N/A

R v4.3.1 R Core Team, 2014124 https://www.r-project.org

CIBERSORT Newman et al., 2015 https://cibersort.stanford.edu/

Seurat v.4.0.3 Stuart et al., 2019 https://satijalab.org/seurat/

BLAST Altschul (1990) ftp.ncbi.nlm.nih.gov/blast/

executables/blast=/LATEST

ImageJ Software Open source N/A

GraphPad Prism software version 9.3.1 GraphPad Software, Inc. https://www.graphpad.com/

IGV Robinson et al., 2011 http://software.broadinstitute.org/

software/igv/

Kassandra code Zaitsev et al.77 https://github.com/BostonGene/

Kassandra
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Shiny v1.7.4 R Studio Partners, R Core

Team 2019125
https://www.r-project.org/nosvn/

pandoc/shiny.html

Tidyverse v1.3.9 vignettes/paper.Rmd126 https://www.tidyverse.org/packages/

Bioconductor v3.17 Huber et al. 2015127 https://www.bioconductor.org

Paper code #1 This paper https://github.com/marchionniLab/

ing-2023 - https://doi.org/10.5281/

zenodo.14847458

Paper code #2 This paper https://github.com/Mew233/

DeepPTCL - https://doi.org/

10.5281/zenodo.14845644

Other

Clinical Annotations This paper Table S1

BD FACSCantoTM II BD Biosciences N/A

BD LSR Fortessa BD Biosciences N/A

LSRII BD Biosciences N/A

BD FACSAriaTM III Cell Sorter BD Biosciences N/A

BD FACSCelestaTM Cell Analyzer BD Biosciences N/A

NovaSeq 6000 Illumina N/A

TissueLyser II Qiagen 85300

Leica Bond-III Leica instruments N/A

Leica Bond-RX Leica instruments N/A

Rodent diet PicoLab Rodent Diet 20 5053

Ventilated cages N/A N/A

Mouse hair removal kit 3 M 9667L

Gauze Sponges Thermo Fisher Scientific 13-761-52

VWR� Dissecting Scissors, Sharp Tip, 41/200 VWR 82027–578

VWR Dissecting Forceps VWR 89259–944

Isoflurane chamber with nose cone N/A N/A

Wound Clip Complete Kit Thermo Fisher Scientific BD427638

1 mL syringe VWR 76124–644

5 mL syringe VWR 76163–596

Animal Ear Punch, Plier-Style VWR N 10806-290

Freezing container VWR 55710–200

50mL Falcon Tubes VWR CA21008-940

Sterile Petri Dish VWR 25384–342

Scalpel with blade no. 10 VWR-Miltex 21909–654

Sterile razor VWR 55411–050

2mL Serological Pipette Thermo Fisher Scientific 170365

5mL Serological Pipette Thermo Fisher Scientific 170355

10mL Serological Pipette Thermo Fisher Scientific 170367

25mL Serological Pipette Thermo Fisher Scientific 170357

Alcohol pad VWR 720–2586

Puralube� Ophthalmic Ointment Patterson veterinary 211–38

Sutures: Dermalon Suture, Blue, Size 5/0,

1800, CE-4 Needle

Medline D-G175621

Insulin Syringes VWR BD328438

RAM Scientific Safe-T-FillTM Capillary Blood

Collection Systems: Lithium Heparin

ThermoFisher 14-915-65

Lab animal scale N/A N/A

Digital caliper VWR 36934–152
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human study
The collection of PTCL patient data and tissue for the generation and distribution of PDX and derivativeswere performed according to

the guidelines of the Institutional Review Board-Research at the Weill Cornell Medicine, Memorial Sloan Kettering’s Institutional Re-

view Board (IRB)/Privacy Board and the Comitato Etico Interaziendale, AOU San Giovanni Battista di Torino and CTOMaria Adelaide

di Torino. All patients participating in the study signed informed consent forms approved by the authority responsible (see above). In

all cases, patients can withdraw their consent at any time, leading to the prompt disposal of their tissue and any derived material.

Biobanked Patient-Derived models can be requested at https://innovation.weill.cornell.edu. Clinical information is available in

Table S1. Additional data i.e., age, gender, genetics, therapy, etc. of subjects can be inquired through https://innovation.weill.

cornell.edu.

Pathological samples most frequently from diagnostic tissue samples (76/88), and some from bone marrow (3/88), pleural effu-

sions (2/88), or peripheral blood (7/88) were collected at the Weill Cornell Medicine (WCM) of New York, University of Torino, and

Memorial Sloan Kettering Cancer Center (MSKCC). Both fresh (n = 54) and viably cryopreserved tissue samples were implanted

(n = 34). Diagnoses were assigned according to the WHO classification by expert pathologists. De-identified patients’ samples

(323) were obtained with informed consent under WCM (78), Torino (6), MSKCC (234), S. Raffaele at Milan (1), City of Hope (3),

and Mount Sinai (1) Institutional Review Boards (IRB)-approved protocols, according to the Declaration of Helsinki.

Mice models
NOD Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG), NOD.Cg-B2mtm1Unc Prkdcscid Il2rgtm1Wjl/SzJ (NSG B2m), NOD.Cg-Prkdcscid H2-K1b-

tm1Bpe H2-Ab1g7-em1Mvw H2-D1b-tm1Bpe Il2rgtm1Wjl/SzJ (NSG-MHC I/II DKO), and NOD.Cg-Hc1 Prkdcscid Il2rgtm1Wjl/SzJ

(NSG-Hc1) mice were originally purchased from Jackson Laboratories and then bred in-house and handled according to WCM Insti-

tutional Animal Care and Use Committee (protocol #2014-24).

Primary PTCL samples were implanted subcutaneous (sc, 2 fragments, 1mm3 each) or via intravenous (iv; 13 106 cells, 150 mL of

DPBS) or intra bone (ib; 1 3 106 cells, 10–20 mL of DPBS) routes, in 4-6-week-old (male/female ratio: 1:1) NSG B2m/NSG-MHC I/II

DKO mice.128 PDX-Dlines were s.c. implanted in Matrigel (25%, 1x106 cells, 150 mL of DPBS). Engraftment was monitored every

week by visual inspection (s.c.) and/or multicolor flow cytometry on peripheral blood. Mice were sacrificed at the earlier sign of

distress. All tissues were collected for histology, immunohistochemistry, and additional ancillary studies. Viable and dry samples

were cryopreserved for PDX transplantation/biobanking and genomic/functional studies. Tumors were then propagated along mul-

tiple generations corresponding to serial passages (T).

Cell culture
PDX-Dlines, PDX derived stromal cells, PTCL continuous cell lines (SUPM2, L82, MAC1 and TLBR1), andMS-5 stromal cell line were

cultured in RPMI (Sigma) supplemented with 20% FBS (Corning), 100 U/ml glutammine (Sigma), Normocin 1:500 (InVivoGen) and

100mg/ml streptomycin (Sigma) and maintained at 37�C in a humidified 5% CO2 atmosphere. IL2 and TO-ALCL-BELLI PDX-Dlines

were supplemented with exogenous interleukin-2 (50U/ml) and interleukin15 (10mg/ml) (R&D). Cells were analyzed by flow cytometry

using a panel of monoclonal antibodies against human T cell surface markers twice per year.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Carbon Dioxide (CO2) N/A N/A

Isoflurane N/A N/A

Feeding gavage needles braintreescientific N-VP 22G-15S

Mouse Tail Illuminator Restrainer braintreescientific MSPP-MTISTD

Matrigel Corning 354234

Trocar for mouse surgery braintreescientific TRO 14MS

Surgical Scrub Betadine Purdue Products LP 6904214–40890

Betadine Iodine Solution Purdue Products LP 158348

Meloxicam Boeringer Ingelheim L20805A-42

Tear gel Optixcare Eye Lube BP231-1

Ethyl Alcohol Anhydrous Commercial Alcohols PO16EAAN
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METHOD DETAILS

Isolation of viable PDX-derived tumor cells
Tumor tissue was finely dry minced using sterile blades and digested for 30–45 min at 37�C. Digestion media was composed of

RPMI1640 (Sigma) and digestion buffer (4:1). The digestion buffer was prepared according to the following: 140nM NaCl (Sigma),

5mM KCl (Sigma), 2.5mM Phosphate buffer ph7.4 (prepared by solving 3.1g of NaH2PO4-H2O and 10.9g of Na2HPO4 anhydrous

in 1 L of sterile cell culture grade water), 10mM HEPES (Sigma), 2mM CaCl2 (Sigma), 1.3mM MgCl2 (Sigma), 25 mg/ml of Colla-

genase A (Roche), 25 mg/ml Dispase II (Sigma), 250 mg/ml DNAase (Roche). The digested tissue was then passed through 70mm

nylon filters (Corning) and the resulting cell suspension was washed twice with PBS (Sigma). Cells were resuspended in RPMI1640

(Sigma) plus 20% FBS (Gibco) and seeded at 1 million/ml in T150 flasks (Corning) overnight. The day after, floating T-Cells were

separated from stromal cells attached to the flasks and centrifuged on a Ficoll Paque (Sigma) gradient to remove dead cells, red

blood cells, and debris, to isolate a pure (>95%) and viable (>95%) T cell population. Stromal adherent cells were cultured

(RPMI1640 20%FBS - Sigma) and used for experimental purposes if needed. T cell suspensions were cultured (RPMI1640

20%FBS – Sigma/Corning) and analyzed by flow cytometry using a panel of monoclonal antibodies against human T cell surface

markers.

Histopathological analyses
Tissues were recovered within 0.5-1h after mouse sacrifice, fixed in 10% neutral buffered formalin (Sigma), and processed for his-

tology and immunohistochemistry. Immunohistochemistry was performed on 4mm Formalin Fixed Paraffin Embedded (FFPE) sec-

tions of multiple organs (lungs, spleen, liver, heart, kidney, and tumor mass). Deparaffinization, rehydration, and antigen retrieval

were performed by BERS2 (prediluted; pH 9.0) antigen retrieval solution performed on the Bond-III Leica automated slide stainer

for 20min at 100�C. Specimens were incubated with primary antibodies (Table S11 and key resources table) followed by visualization

with the Leica Bond detection kit (BONDPolymer RefineDetection) for 15min at room temperature. For dual optical staining, sections

were then incubated with a second primary antibody and developed using a BOND Polymer Refine Red Detection, as described

above. The specimens were then counterstained with hematoxylin and the cover slipped. Each IHC run contained external positive

controls.

All the antibodies used (Table S11 and key resources table) were diluted in PBS (Sigma).

Multicolor flow cytometry
Flow cytometry was performed by staining lymphoma cells with a mix of antibodies diluted 1:100 in PBS and recognizing T- and

B-cell restricted markers. The antibodies used are summarized in the supplementary material and were purchased from BD Biosci-

ences. Briefly, lymphoma cells were identified after gating on human CD45+ cells, and the selected markers were analyzed inside the

human CD45-positive cell population. At least 10000 events were acquired. Samples were run on the BD FACSCanto and analyzed

with the BD FACSDiva software.

Dual-color fluorescence in situ hybridization (FISH)
BAC clones spanning the gene loci were obtained from BACPAC Resources at http://bacpac.chori.org. Commercial FITC centro-

meric probes were used as well (Abbott Park, Illinois, U.S.A). DNAwas labeled by nick-translation using spectrum green or Spectrum

red-dUTP fluorochromes (Abbott). FISH was performed by standard methods and at least 20 metaphase spreads or 200 interphase

nuclei on DAPI-stained slides were scored.

Multiplex immunofluorescence tissue staining
Multiplexed immunofluorescence (mIF) was performed using the Opal system (Akoya Biosciences) and SignalStar by staining 4

micron-thick Bouin-fixed, paraffin-embedded whole-tissue sections from diagnostic biopsy specimens in a Bond RX automated tis-

sue stainer (Leica Biosystems, Buffalo Grove, IL).129 Alternatively, we used a combination of oligonucleotides and fluorophores to

amplify the antibody signal, allowing for the detection of targets, at low expression levels (https://www.cellsignal.com/

applications/signalstar-multiplex-ihc-overview). Whole slide scans were subsequently obtained at 203magnification using the Vec-

tra Polaris Automated Quantitative Pathology Imaging System (Akoya Biosciences) to generate a collection of tiled images, which

were subsequently spectrally unmixed in InForm (v2.4.8, Akoya Biosciences). Unmixed tiles were finally fused in HALO

(v3.3.2541.231, Indica Labs) to generate a single multi-layered TIFF image file for each sample, which was used in downstream an-

alyses. The analysis was performed using QuPath 0.5.1 (https://qupath.github.io) where we identified each phenotype based on the

median intensity of independent marker histograms.

The main phenotypes of the TME validation were classified as T cells (CD3 marker), Macrophages (CD68 and CD163), Fibroblast

(SMA), B cells (CD20), and Others (DAPI without any other marker).

DNA and RNA extraction
Total RNA extraction from (dry frozen) tissues or cells was performed using TRIZOL (Invitrogen) according to the manufacturer’s pro-

tocols. RNA quality was checked on an Agilent Bioanalizer (Agilent Technologies). Samples with an RNA integrity number (RIN) > 7
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were selected for further analysis. RTqPCR was executed using the iQ SYBR Green Real-Time PCR Supermix (BioRad). The list of

primers is reported in the Table S12. Genomic DNAwas extracted from (dry frozen) tissues or cells using phenol/chloroform (Sigma).

Quality and quantity were checked using the Agilent Tapestation (Agilent) and Qubit (Invitrogen).

Identification of clonal antigen receptor gene rearrangements
Clonal rearrangements of BCR (IgH and IgK) and TCR genes were determined using the Invivoscribe kit based on the BIOMED-2

assay130 on extracted DNA. PCR products are analyzed by capillary electrophoresis (CE) using the ABI 3500 Genetic Analyzer.

Total RNA and whole-exome sequencing
Total RNA was used for cDNA library preparation using the TruSeq-Stranded Total RNA sample preparation (HS protocol) following

the manufacturer’s instructions (Illumina). DNA1000 Kit (Agilent) was used to size and quantify the library preparation on an Agilent

2100 Bioanalyzer. Sequencing data were aligned to the human reference genome (hg38) using the STAR v2.3.5 aligner(Dobin, Davis

et al. 2013) after human-mouse read disambiguation via BBsplit v37.76. Gene counts were calculated by using featureCounts(Liao,

Smyth et al. 2014) v1.4.6 concerning Gencode v19 annotations.

TCR signaling activity was determined from RNA-sequencing using validated signatures available at MSigDB (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp).

For whole-exome sequencing, genomic DNA was used to prepare the libraries using the SureSelect 6.0 kit (Agilent), according to

the manufacturer’s protocol. Whole exome sequencing data were aligned to the human reference genome (hg38) using mem from

BWA v-0.7.12(Li 2013). Duplicate reads were removed using theMarkDuplicates command fromPicard v1.124 (http://broadinstitute.

github.io/picard/), and local realignment around indels was performed using ABRA v0.92(Mose, Wilkerson et al. 2014). Somatic mu-

tations were called withMuTect v1.1.5. FACETS v0.9.7–13was employed for copy number analysis (Shen and Seshan 2016), and the

segmentation was visualized in R with the plotAberration function from the copy number package (Nilsen, Liestol et al. 2012). Both

RNA and DNA libraries were sequenced on an Illumina HiSeq 4000 (paired-end, 100bp or 50bp).

RNAseq data filtering and surrogate variable analysis
To analyze RNAseq data on PDX samples, mouse reads were filtered out using bbsplit.sh from the BBMap v37.76 package (https://

github.com/BioInfoTools/BBMap/tree/master). We then only focused on human reads to perform subsequent expression analyses.

To overcome the heterogeneity in gene expression of different samples (e.g., primary and PDX) we constructed ‘‘surrogate vari-

ables’’ to assess so-called latent co-variables (variables that are not related to the factor of interest) using the svaseq package.131,132

Thismethod provides a sample-wisematrix of numeric vectors representing surrogate variables which capture sources of variation in

the data that are not of primary interest. When incorporated into downstream analyses, e.g., differential expression analysis, these

variables are accounted for in the determination of differentially expressed genes. These adjustments resulted in a PCA plot (Fig-

ure 3A) defining the separation by subtype and intermingling between primary and PDX samples.

Binding affinity prediction
NetMHCIIpan-4.1 algorithmwas used to Predict Binding Affinity of EBVPeptides.133 Each peptide’s binding affinity was predicted for

MHCII alleles found in PTCL primary and patient-derived models. To improve binding affinity, the original peptide sequences were

extended followed by performing predictions for the prevalentMHCII alleles, which are common in over 90%of the population.134 For

the synthesis, peptides with a predicted binding affinity of <1000 nM for the haplotypes found in the patient-derived models were

chosen. The peptides were synthesized by Genscript Biotech, NJ, USA.

Single-cell RNA-seq and data analyses
The 10x Genomics Chromium v.2 protocol was carried out according to the manufacturer’s recommendations (10x Genomics,

Pleasanton, CA). A total of 2000–5000 cells per sample were processed using Cell Ranger version 2.1.0 with default parameters.

Reads were aligned to the human reference sequence hg38. Reads from the PDX tissues were additionally aligned to the mouse

reference sequence mm10. Downstream analysis was performed using the Seurat package (version 3.2.2) in R (Butler et al.,

2018). Low-quality cells (e.g., cells with >200 or <5000 uniquemolecular identifiers (UMIs) per cell and cells with >10%mitochondrial

gene percentage) were removed. Doublets were identified using DoubletFinder135 and removed. Normalization, variance stabiliza-

tion, and integration were performed using SCTransform workflow.136 Uniform manifold approximation and projection (UMAP)

dimensionality reduction was used to visualize cell clusters. Cells were then annotated using the SingleR package,137 which performs

reference-based cell annotation. Two cell-type reference datasets from the celldex package137 were utilized for cell annotation: the

human primary cell atlas138 and the Blueprint/ENCODE ref. 139

Targeted deep sequencing and mutation calling
A targeted sequencing gene panel including coding exons and splice sites of 538 genes (target region: �3.2 Mb) that are recurrently

mutated (>2) in mature T cell neoplasms as well as genomic regions corresponding to recurrent translocations were designed to

investigate the genomic profile of the primary and PDX tumors. Using an input of genomic DNA of at least 100 ng isolated from frozen

tissues, the next-generation sequencing (NGS) libraries were constructed using the KAPA Hyperplus Kit (Roche), and hybrid

Please cite this article in press as: Fiore et al., A patient-derived T cell lymphoma biorepository uncovers pathogenetic mechanisms and host-related
therapeutic vulnerabilities, Cell Reports Medicine (2025), https://doi.org/10.1016/j.xcrm.2025.102029

e10 Cell Reports Medicine 6, 102029, April 15, 2025

Article
ll

OPEN ACCESS

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/BioInfoTools/BBMap/tree/master
https://github.com/BioInfoTools/BBMap/tree/master


selection was performed with the Twist Library Prep Kit (Twist Biosciences), according to manufacturer’s protocols. Multiplexed li-

braries were sequenced using 150-bp paired end on Hiseq4000 sequencers (Illumina).

Paired sequencing fastq files were aligned to the human genome assembly (hg19) using the Burrows–Wheeler Aligner (version

0.7.1).140 SAMtools (version 1.2)141 were used to sort, index the reads. Then, duplicated reads were marked with Picard (version

1). Somatic mutations were called by the variance calling software SAVI2, which is based on the empirical Bayesian method.142 So-

matic mutations that annotated as a synonymous variant, intragenic variant, or intron variant; annotated as a common SNP

(dbSnp138); with variant allele frequency% 5% in the tumor sample; with altered readsR2 in thematched normal control; with over-

all mismatch rate >0.02 (https://github.com/genome/bam-readcount) were removed. For PDX samples, reads originated from the

mouse genome were removed by filtering out reads with 2 or less unmatched bases compared to the mouse reference genome

(GRCm38). For those tumors without normal control, somatic mutations detected in any normal samples in the cohort were addition-

ally filtered out. To annotate and predict the putative pathogenicity of the variants, we used the Annovar dbNSFP variants annotation

and set a threshold of at least 3 concordant entries.59 Mutation signature analysis was performed using R package SomaticSigna-

tures.143 Next, we used R package to generate the Ternary plot.144 To infer the mutation order of somatic variants in PTCL, we fol-

lowed the strategy in Wang et al.71 for the reconstruction of tumor evolutionary directed graph. We selected the recurrently mutated

genes to build patient specific evolutionary networks. A mutation observed in both the primary tumor and the PDX was defined as

clonal events, whereas subclonal events weremutations only observed in one of these samples. Then, we pooledmultiple sequential

networks from different patients to construct the mutation order during tumor progression.

Copy number calling, tumor purity estimation, CCF estimation and phylogenetic tree reconstruction
CNVkit145 was used to generate estimated copy number variations (CNV) in a tumor specimen compared with its matching normal.

GISTIC 2.0 was used to detect recurrent copy number variations (CNV).146 ABSOLUTE was used to infer tumor purity and cancer cell

fraction (CCF) for each WES sample by integrating variant allele frequencies (VAF) and copy number variations (CNV). Then, the

ABSOLUTE-annotated MAF files were utilized by PhylogicNDT147 to infer the clonal structure, phylogenetic relationship between

clones and evolution among different time points. Fish plots were generated by R package fishplot.148

TCR clonality and prediction of antigen binding
We used MiXCR (http://mixcr.milaboratory.com/and https://github.com/milaboratory/mixcr/), a universal framework that processes

big immunome data from raw sequences to quantitated clonotypes.149 We defined explicit clones, populations expressing defined

TCRs with a read coverage greater than 20, and the most abundant clone(s) with a significantly higher coverage compared to a sec-

ond-most covered clonotype. We next interrogated the predicted amino acid sequences of the CDR3 using a curated database of

T cell receptor (TCR) sequences with known antigen specificities (https://vdjdb.cdr3.net/search)150 Both TCR alpha and beta chains

were evaluated, and mismatched were scored. We then correlated putative binding peptides and their corresponding amminoacidic

sequences with HLA-A or HLA-B alleles. T cell Receptor Gamma Gene Rearrangement was performed using a commercial Kit

(Gamma TCR clonality was determined by Assay 2.0 - ABI Fluorescence).

Functional experiments
Cell number and viability were assessed by Trypan blue exclusion count (Invitrogen). Cell metabolism was evaluated using lumines-

cence of CTG-tagged ATP kit (cell titer glo Promega kit), the plates were analyzed on a plate reader (Synergy 4, Biotek). Apoptosis

was detected using Annexin V-7AAD Apoptosis Detection Kit I (BD Pharmingen), while cell death with propidium iodide staining (PI).

Cells were analyzed by flow cytometry (BD LSR-II).

Protein isolation and Western blotting

Cells were lysed in JST buffer (Tris-HCl 20mM Ph7.5, 150 mM NaCl, 1% Triton X-100, 5 mM EDTA, 1mM Na3VO4, 1mM PMSF,

10mM NaF, and 1X protease inhibitor cocktail, Sigma). Protein concentration was determined with the DC protein assay (BioRad)

using bovine serum albumin (Sigma) as the standard, and equal amounts of protein were analyzed by SDS-PAGE (12% acrylamide).

Gels were electroblotted into nitrocellulosemembranes (G & EHealthcare). Membranes were blocked for 1 hwith 5%non-fat drymilk

(Sigma) in PBS plus 0.1% Tween 20 and incubated at 4�C overnight with the primary antibody. Detection was performed with perox-

idase-conjugated secondary antibodies, using the enhanced chemiluminescence system (Thermo Scientific). Primary antibodies

used were anti-phospho-p44/42 (Cell Signaling #9101, 1:10 dilution), anti-p44/42 (Cell Signaling #9102, 1:10 dilution) and anti-

GAPDH (Cell Signaling #5174, 1:100 dilution).

DeepPTCL
DeepPTCL, a deep learning model designed to predict drug synergy on cell lines from the Cancer Genome Atlas. Drugs represented

as SMILES were converted using RDKit into a PyG graph, with atoms represented as nodes and bonds represented as edges. The

features of the cell line were gathered from the Genomics of Drug Sensitivity in Cancer. From the normalized expression levels of

17,737 genes, we selected 908 landmark genes. To develop themodel, we used DrugComb (the largest database of high-throughput

combination screening data) as a training dataset with 2,174 drugs on 164 cell lines, altogether a total of 16,3816 drug-drug-cell trip-

lets. We then trained themodel with a 5-fold cross-validation (each colored line represents a run). We designed two challenging tasks

for training to improvemodel generalizability. In the leave-drug-out setup, we excluded drugs seen from training from the test set. For
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the leave-combination-out setup, the drug pairs from training were removed from the test set, although the same individual drugs

might appear in both datasets. The performance of the model was evaluated using AUROC and PRAUC metrics. The higher

AUROC and PRAUC value quantifies the better performance of the model. We show DeepPTCL, achieved an AUROC score of

0.806 (CI = 0.801–0.819) and a PRAUC score of 0.54(CI = 0.518–0.576) on the held-out test data of 32,000 drug combinations.

Drug screenings and response prediction
The HTS drug-screening library, composed of 433 targeted-compounds, was purchased from SelleckChem, and consists of a sub-

set of SelleckChem’s ‘Targeted Selective inhibitory Library’. Drugs were selected based on current clinical applications (FDA

approved), selectivity (target of canonical signaling pathways [JAK/STAT, Ras/ERK, PI3K/ATK, b-catenin, chromatin-modifiers,

anti-apoptotic etc.]) and redundancy (multiple drugs targeting the same pathways). Collectively, a total of 634 proteins were targeted.

Drug screening plates were prepared at a concentration of 1mM spanning 2x 384 well plates using the Tecan Freedom EVO 150 (Te-

can, CH) in the High throughout and Spectroscopy facility at Rockefeller University.�33,000 PTCL cells were added per well, having

150mL of total volume (drug solution + cells), and incubated at 37�C for 72 h. After drug incubation, cell viability was evaluated based

on luminescence of CTG-tagged ATP (cell titer glo Promega kit), and assessed using a plate reader (Synergy 4, Biotek), and the data

was processed, analyzed, and plotted using MATLAB (Mathworks, MA). To determine compound activity, each data point was

normalized to its corresponding in-plate vehicle control (16 wells of vehicle controls per plate), and then linearized to transform

the response-matrix (16x33) into a 433x1 drug-response vector. To assess the degree of concordance, sample-replicates were

plotted analyzed using principal component analysis (PCA).

For the flow cytometry-based 53 drugs screening, the following conditions were applied: PTCL cells were labeled with Cell Tracer

Violet (1mM, Invitrogen), washed and plated (83,000 cells/well) in 96-well plates and challenged with the drug library (1mM) in dupli-

cate/triplicate. After 72 h, all cells were collected and stained with propidium iodide (Sigma). In selected cases, 10000 stromal cells

stained with CSFE (1mM, Invitrogen) were previously added and allowed to attach to the plate overnight. Cell viability was assessed

by HTS flow cytometry (BD Celesta, Fortessa and Symphony). At least 10,000 events were recorded per well. Flow data were

analyzed by FCSExpress 7 (DeNovo Software) and Prism 9 (GraphPad Software, Inc.). When two drugs were screened in combina-

tion, compounds were delivered simultaneously at the indicated concentrations on PTCL cells plated as above. Readouts were

collected and analyzed as described for the flow cytometry-based 53 drugs screening.

To perform prediction models using viability data and RNAseq data, we used the R caret (Classification And REgression Training)

package as previously described, adopting a splitting data procedure with 70% training to 30% test ratio as validation.11

For each drug, we explored gene signatures included in the drug-related KEGG pathway database and focused on gene sets pre-

dicting cell viability (‘‘feature selection’’) using recursive feature elimination or Gam scoring.151,152

TME FGES
We previously developed a method for TME cell deconvolution and machine learning algorithm to re-construct the TME using bulk

expression data.24 Thismethod is based on the presence and association of Functional Gene Expression Signatures (FGES) covering

distinct cellular subtypes. Twenty FGES relevant to TME (e.g., cancer-associated fibroblasts and tumor-infiltrating lymphocytes),

noncellular components of the tumor microenvironment (e.g., immune-suppressive cytokines and extracellular matrix), biological

processes (e.g., secretion and proliferation) were curated from the original FGES publication24 and four canonical pathways activa-

tion were calculated using PROGENy (Pathway RespOnsive GENes153). Twenty-four FGES (including four signaling pathways) were

developed (Table S7). Selected cellular FGES were also validated using publicly available single-cell RNA-seq data.24

TME clustering
FGES signatures were used to identify microenvironmental patterns among PTCL samples by unsupervised dense clustering using

the Louvain method for community detection (63). FGES intensities were median-transformed within each cohort. Non-PTCL sam-

ples were also transformed using PTCL samples’ median andMAD values. Inter sample similarity was calculated using Pearson cor-

relation. The resulting distancematrix was converted into a graph where each sample formed a node, and two nodes formed an edge

with weight equal to the pair’s Pearson correlation. Edges with weight lower than specified thresholds were removed and the Louvain

community detection algorithm was applied to calculate graph partitioning into clusters. To mathematically determine the optimum

threshold for observed clusters, we usedminimumDavid Bolduin, maximumCalinski Harabasz and Silhouette scores excluding sep-

arations with low-populated clusters (<5% of samples).

TME heterogeneity and pseudotime analysis
Shannon diversity indexes were calculated from the TME cell deconvolution profiles. To calculate the TME heterogeneity index for

each tumor, we performed cell deconvolution on the bulk RNA-seq samples from tumor tissue. From this prediction, we calculated

the estimated proportion (p) of cells that belong to each distinct cell type. The subpopulation diversity index was then calculated as

Shannon Index: DI = �Si(pi 3 lnpi), with larger values representing higher TME heterogeneity within the lymphoma. The monocle

2.0 R package154 was implemented for dimensionality reduction and the construction of pseudotime.
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Tumor clonality
To process immunome data from RNA sequences into quantitated clonotypes, we applied MiXCR v2.1.7.149,155 Single clonotypes

were grouped into clones with specific VDJ combination and identical CDR3 nucleotide sequences. For T cells, the clones were

further aggregated into clone groups if the VDJ combination was the same and CDR3 nucleotide sequences differed no more

than 1 nucleotide. The biggest clone group was assigned as tumor if the absolute clonotype counts >20; the relative clonotype

counts >5%; the ratio of the second biggest group to the first <0.6 and the group contains an enriched clone >25%. The TCRa/b

chains were called if there was an enriched clonotype in one of the TCR chains. In cases with an enriched clone in both chains,

the biggest by absolute counts was selected.

Viral reads identification
Viral reads identification was based on GATK Pathseq software kit,142 quantitative assessment expressed in VRM (viral read per

million human reads). Viral status and serotype verification were performed using the VIRTUS pipeline.143 Threshold for determining

viral status as "positive" was chosen at 2 VRM (viral reads per million host reads). At this threshold, the number of raw reads makes it

possible to evaluate the expression of viral transcripts. Mapping, score, and quantification of viral transcripts was also analyzed by

ViGEN.144

Analysis of murine TME signatures
We used Kallisto v.0.42.4156 to align RNA-sequencing reads to the transcriptome reference GRCm38.p6. Transcript annotation (pro-

tein coding and noncoding), transcript to gene mapping, and annotation to human homologs for murine genes were retrieved from

the Ensembl database.157For the PDX sample xengsort algorithm146 was used to split reads into human, mouse or neither origin.

Gene expression was calculated by combining host and graft raw Kallisto output and refactoring TPM values. Only protein-coding

genes with human homologs were used in subsequent analysis. To measure the similarity between the human lymphoma sample

microenvironment and a particular murine lymphoma phenotype, we developed the microenvironment similarity (MES) metric, which

is a reversed Euclidean distance between estimated percentages of different cell types in murine and human samples as follows:

MES (P, s) = 1i(phumani � pmousei)2, where P is a murine lymphoma phenotype, s is a human lymphoma sample, phumani is the

estimated cell percentage of cell type i in the sample s, pmousei is the median estimated cell percentage of cell type i among murine

samples with phenotype P.

Kassandra deconvolution
To get more quantitative insights into the human and PDX TME we utilized previously developed algorithm Kassandra. It allows to

estimate percentages of the major populations of cells using bulk RNA-sequencing.77

CART generation and production
Human T cells obtained from theUniversity of Pennsylvania Human Immunology Corewere combined in a 1:1 ratio of CD4+ andCD8+

cells. For cells subjected to electroporation (CD5 KO CART5 cells), a mixture of 5 mg sgRNA and 10 mg of TrueCut Cas9 Protein v2

(Invitrogen; Cat# A36499) was prepared and incubated at room temperature for 10 min to form a ribonucleoprotein (RNP) complex

before electroporation. The CRISPR-Cas9 sgRNA was chemically synthesized (Integrated DNA Technologies). A total of 10 3 106

T cells in 100 mL of the buffer provided with P3 Primary Cell 4D-Nucleofector X Kit L (Lonza; Cat# V4XP-3024) were mixed with

the RNP complex and electroporated using the pulse code EO-115 in a 4D-Nucleofector (Lonza; Cat# AAF-1002B). Mock KO

UTD cells underwent the same electroporation procedure described abovewithout the presence of an RNP complex. Following elec-

troporation, T cells were incubated at 37�C for 24 h and subsequently activated usingCD3/CD28 Dynabeads (Gibco; Cat# 40203D) at

a ratio of 3 beads per cell. For cells not subjected to electroporation (UTD and CART30), the expansion process began at the CD3/

CD28 Dynabead activation step. The following day, CAR lentiviral vectors (CAR5 or CAR30) were introduced to the stimulated cul-

tures at amultiplicity of infections ranging between 1 and 3. Beads were removed between days 6–8 post-stimulation, and cell count-

ing was performed every other day using a Moxi GO II (Orflo) until growth kinetics and cell size indicated they had rested from stim-

ulation. Initially, all electroporated T cells were culturedwith 20 ng/mL of supplemental cytokines IL-7 and IL-15, whichwere gradually

reduced to 0 ng/mL by the end of the expansion process.

For the in vitro cytotoxic assays, PDX-Dline cells (5x105/well) were cocultured with CAR T cells at the indicated E:T ratios in 96 well

round bottom for 24-48-72 h. Cells were harvested, washed and stained with an amine-reactive viability dye for dead cell detection

and surface T cell associated/restricted antigens. The samples were analyzed by flow cytometry (FCM). Percent of viable cells, and

target cells (PDX-Dline cells of CART) were enumerated. Specific lysis was calculated using the following formula: % specific lysis =

[(experimental lysis – spontaneous lysis)/(maximum lysis – spontaneous lysis)] 3 100.

For the in vivo CART adaptive therapies 6–10-week-old NOD-SCID-gc�/� (NSG) mice were injected on day 7–14 after s.c. tumor

delivery, 13 106 T cells (control or CAR engineered) were injected via tail vein in 0.2mL sterile PBS. Animals were monitored for signs

of disease progression and overt toxicity, such as xenogeneic graft-versus-host disease, as evidenced by >10% loss in body weight,

loss of fur, diarrhea, conjunctivitis, and disease-related hindlimb paralysis.
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Preclinical in vivo studies
For in vivo experiments, xenografts were surgically implanted in 4–8 weeks old adult NSGmice and numbers, age, and gender of the

mice were equally distributed among arms. Compounds were administered according to Table S10. Mice were closely followed for

symptoms of tumor progression until moribund. Tumor burden was evaluated by digital caliper twice a week on s.c. masses or MRI

where specified. Bodyweight was used as a surrogate for drug toxicity. Statistics and graphic representation were generated using

Prism 9 (GraphPad Software, Inc.).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics and software
Statistical significance was calculated by two-tailed Student’s t test and Mantel–Cox test with GraphPad Prism software. GraphPad

Prism software was used to calculate the IC50 values. Statistically significant differences are indicated with asterisks in the figures,

accompanied by p values in the figure legends. Error bars indicate standard error of the mean (SEM) for the number of replicates, as

indicated in the figure legends. Data visualization and plots were generated in R. Schematic visualizations were produced at https://

biorender.com.
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