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A B S T R A C T   

While essential to our understanding of solid tumor progression, the study of cell and tissue mechanics has yet to 
find traction in the clinic. Determining tissue stiffness, a mechanical property known to promote a malignant 
phenotype in vitro and in vivo, is not part of the standard algorithm for the diagnosis and treatment of breast 
cancer. Instead, clinicians routinely use mammograms to identify malignant lesions and radiographically dense 
breast tissue is associated with an increased risk of developing cancer. Whether breast density is related to tumor 
tissue stiffness, and what cellular and non-cellular components of the tumor contribute the most to its stiffness 
are not well understood. Through training of a deep learning network and mechanical measurements of fresh 
patient tissue, we create a bridge in understanding between clinical and mechanical markers. The automatic 
identification of cellular and extracellular features from hematoxylin and eosin (H&E)-stained slides reveals that 
global and local breast tissue stiffness best correlate with the percentage of straight collagen. Importantly, the 
percentage of dense breast tissue does not directly correlate with tissue stiffness or straight collagen content.   

1. Introduction 

A significant disconnect exists between sophisticated biomechanical 
and biophysical experiments “at the bench” [1], and clinical methods 
used to determine effective therapeutics for patients with solid tumors. 
Women with breast cancer are typically diagnosed via dedicated breast 
imaging modalities (mammogram, ultrasound, MRI, tomosynthesis). 
Mammograms are radiological images that reveal regions of dense, 
fibrous, and glandular breast tissue typically shown in white against 
non-dense, fatty tissue in black [2]. Methods for evaluating breast 
density include visually binning images into categories (fatty, scattered, 
heterogenous, extremely dense) based on the percentage of white versus 
black features in the breast image, or quantifying the exact percentage of 
dense tissue in white via image analysis (Fig. 1a). 

Dense breast tissue poses two major risks for patients. The first is an 
impaired ability to detect malignant lesions through imaging [3]. The 

second is as an independent risk factor for breast cancer. Increased 
breast density is associated with a worse patient prognosis [4–13], poor 
progression free survival rate [14,15], and increased mortality [16,17]. 
These denser tissue regions are purported to be more fibrous than the 
surrounding tissue [18], and have been linked to an increase in the 
amount of collagen and numbers of epithelial and non-epithelial cells 
[19]. 

While mammography remains the standard for breast cancer 
screening, other imaging methods like elastography have been devel-
oped to leverage changes in tissue stiffness [20–23]. Breast ultrasound 
elastography, a method utilizing sonographic imaging, identifies 
changes in elastic moduli to detect lesions in the breast [24,25] and 
shows promise as an imaging modality alongside traditional ultrasound 
or mammograms to further characterize masses [26,27]. After using 
multiple imaging modalities, core needle biopsies are still an essential 
next step in the diagnostic algorithm [28]. 
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In the laboratory, the application of cell and tissue mechanics has 
yielded great insight into tumor development and progression [29–40]. 
Tissue stiffening, widely attributed to an increase in collagen deposition 
and cross-linking [41–44], has been proposed as a marker of tumor 
biogenesis. Recent studies assessing mechanical tissue stiffness often use 
previously frozen or fixed samples [44–46]; however these preservation 
processes significantly impact the resulting mechanical measurements 
[47]. Despite the lack of a direct link, many conflate breast tissue density 
(radiographically defined fibrous and glandular tissue) and breast tissue 
stiffness (the resistance of tissue to deformation [48]; often broadly 
referring to the elastic modulus). The disconnect in terminology, be-
tween breast density vs. breast stiffness, and assessed features in the 
clinic vs. the bench significantly hampers the generation of new and 

effective mechanobiology-inspired cancer therapies [49–53]. 
Here, we relate medical imaging, treatment history, and histology to 

global and local mechanical measurements using a deep learning, con-
volutional neural network (CNN) that accurately identifies tissue com-
ponents from hematoxylin and eosin (H&E)-stained sections of breast 
cancer tissues (Fig. 1a). Our goal was to relate microanatomical features 
of breast cancer histology to global and local breast stiffness and breast 
density. Patients with luminal A subtype (estrogen receptor (ER) and/or 
progesterone receptor (PR) positive and HER2 negative) have dense 
breasts that have been linked to an increased breast cancer risk [54]. 
Patients with triple-negative (TNBC) subtype (ER, PR, HER2 negative) 
tend to have lower mammographic breast density than non-TNBC pa-
tients, yet, for complex reasons including the inability to use anti-HER2 

Fig. 1. Breast tissue acquisition, characterization, and selected classes for deep learning composition analysis. a, Schematic detailing the breast tissue acquisition and 
characterization starting with medical imaging via mammogram, diagnosis, treatment, mechanical measurements, histology, and machine learning. b, Hematoxylin 
and eosin (H&E)-stained images of cell component classes including (i) blood vessels (capillaries, venules/arterioles), (ii) ducts (excretory, terminal/acini/alveoli), 
(iii) fat, (iv) tumor cells. Scale bars in black are 50 μm. c, Hematoxylin and eosin (H&E)-stained images of extracellular matrix component (ECM) classes including (i) 
wavy collagen, (ii) straight collagen, and (iii) fibrotic tissue. Scale bars in black are 50 μm. d, Second harmonic generation (SHG) images confirming (i) the wavy 
ECM class is wavy collagen, (ii) the straight ECM class is straight collagen, and (iii) the fibrotic tissue is not collagen detectable with SHG. Scale bars in white are 
100 μm. 
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drugs and an increased risk of recurrence, TNBC has a lower overall 
survival rate (76.9%) than other breast cancers (90.3%) [55–57]. Here 
we utilize 32 tissue samples from nine patients with a luminal A subtype 
and one patient with a triple negative (ER, PR, HER2 negative) subtype. 
For each patient, we analyze tumor tissue, and, as a control, grossly 
normal tumor-adjacent breast tissue from the same patient. 

Global stiffness is determined by a compression test, which consists 
of taking one uniaxial measurement per tissue sample to obtain Young’s 
modulus. Local stiffness, obtained through microindentation, reports the 
elastic modulus from multiple, evenly spaced indentation measurements 
across the same tissue surface. Based on these measurements, we then 
identify correlations between tissue stiffness, microanatomical tissue 
composition, and breast density. 

2. Materials and methods 

2.1. Patient tissues 

Patients with abnormal screening or diagnostic breast imaging 
findings require pathologic examination (either core needle aspiration 
or less frequently fine needle aspiration) to definitively characterize the 
abnormal radiographic lesion. If positive for breast cancer, the pathol-
ogist will determine the histologic subtype, assign a Nottingham histo-
logic grade, and perform additional breast biomarker studies (Fig. 1a). 
The combination of physical examination and imaging modalities helps 
to assign the clinical staging regarding the size of the tumor (T), 
abnormal axillary lymph node (N) and the presence of metastatic disease 
(M). If the patient undergoes surgical resection, lumpectomy or mas-
tectomy, the pathological staging will be reported by the size of the mass 
(T) and any lymph node involvement (N). During the pathologic eval-
uation, the histologic type and Nottingham score are confirmed, and the 
overall pathology cancer stage is assigned as defined by the American 
Joint Committee of Cancer Staging Manual, 8th edition [58] (Primary 
Tumor [T] Status and Regional Lymph Nodes [N] Status) (Fig. 1a). 

All patient tissue samples were obtained with written consent from 
the patient and approved by the Johns Hopkins Medicine Institutional 
Review Board (IRB). Tumor-adjacent and tumor tissue samples received 
from the patients were kept in 4 ◦C DPBS immediately after mastectomy 
or lumpectomy. Tumor samples were then transferred for mechanical 
tests within 4 h of resection. The tumor tissue was then sectioned to 
expose the regions of interest for micromechanical mapping and bulk 
compression tests. 

Fifteen tissues from six luminal A patients that did not receive neo-
adjuvant chemotherapy were chosen for the global stiffness analysis. Six 
tissues from two patients, one with luminal A subtype and one with 
TNBC subtype, that received neoadjuvant chemotherapy were used in a 
separate analysis of the relationship between global stiffness and tissue 
composition to avoid any confounding tissue composition distributions 
associated with neoadjuvant chemotherapy previously reported in the 
literature [25,59,60]. Two tissues from one patient with a luminal A 
subtype and no neoadjuvant chemotherapy were used for complemen-
tary local stiffness analysis. Only luminal A patients who did not receive 
neoadjuvant chemotherapy were used to analyze quantified breast 
density. Tissue samples from all patients were used to train the neural 
network. 

2.1. Microindentation of tissues 

The tumor section was mounted on a customized stage and DPBS was 
applied to keep the tissue hydrated throughout the measurement. Dy-
namic indentation by a nanoindenter (Nanomechanics Inc.) was used to 
characterize the tumor elastic modulus [61]. Sneddon’s stiffness equa-
tion [62] was applied to relate dynamic stiffness of the contact to the 
elastic storage modulus of the samples [63,64]. 500 μm flat cylindrical 
probe was used in the indentation experiments. Briefly, procedure of 
indentation is comprised of 3 steps: 1) approaching and finding tissue 

surface at the indenter’s resonant frequency to enhance contact sensi-
tivity and accuracy, 2) pre-compression of 50 μm to ensure good contact, 
3) dynamic measurement at 100 Hz oscillation frequency with ampli-
tude of 250 nm. The indentation procedure mentioned above was done 
consecutively on multiple regions of a single tissue surface in a grid 
pattern to obtain elastic moduli map of the tumor. Because obtaining a 
perfectly flat tissue surface was difficult due to tissue heterogeneity, 
individual indentation processes were observed using a microscope 
camera to determine inappropriate contact of the probe to the tissue for 
inaccurate measurement which were excluded from data. Typically, the 
number of indentation points per tissue mapping was 20–40 with the 
resolution of 1–3 mm spacing between points depending on the size of 
tumor sample. The duration of stiffness mapping was 30 min on average. 
A single measurement was obtained for each indentation. 

2.2. Compression test of tissues 

Tissue samples were sectioned to obtain flat and parallel surfaces on 
all sides. Once the sample was sectioned, it was immediately staged on 
tensile/compression tester (MTS Criterion) for measurement [65]. Top 
compression plate was lowered until in full contact with tissue sample at 
minimal load. Once in contact, the samples could relax and stabilize for 
1 min before actual compression test. Tissue samples were compressed 
at 0.25 mm/s deformation rate until 20% strain. Young’s modulus 
calculation was done on the best-fitted slope of the initial linear region 
(~5–10%) of the obtained stress-strain curve. A single measurement was 
obtained for each tissue. 

2.3. Patient tissue processing 

After obtaining mechanical measurements, each tissue was fixed in 
formalin for 24 h. The tissue was transferred to PBS prior to embedding 
in paraffin, sectioning (4 μm), and staining with hematoxylin and eosin 
(H&E). To minimize the batch effects of H&E image staining and scan-
ning conditions, all tissues were stained in and scanned by the same 
laboratory. 

2.4. Quantifying breast density from mammograms 

Pectoral muscle was removed from mammogram images prior to 
receipt. Images were then cropped to remove any identifiers and keep 
only the breast image. The image was then converted to type 8-bit. 
Thresholding was performed using MinError(l) in ImageJ and a histo-
gram was taken to determine the total breast pixel size. Reverting to the 
original 8-bit image, thresholding using Moments and taking a histo-
gram determined the number of dense breast tissue pixels. A breast 
density percentage was obtained by dividing the number of white pixels 
from the Moments thresholding by the number of white pixels using 
MinError(l) thresholding and multiplying by 100. 

2.5. Second-harmonic generation 

Mounted tissue slides were imaged using a LD LCI Plan-Apochromat 
25×/0.8 Imm objective mounted on a Zeiss LSM 710 NLO upright mi-
croscope. Excitation was provided by a Chameleon Vision II mode- 
locked Ti:Sapphire laser tuned to 880 nm, and the SHG signal was 
captured by an epi-mounted non-descanned detector with a 420–480 nm 
bandpass filter. 

2.6. Manual annotations 

Manual annotations of tissue slides were performed using Aperio 
ImageScope [v12.3.3.5048]. Briefly, cellular and extracellular compo-
nents were identified manually in H&E-stained tissue slides by outlining 
the feature using the built-in annotation function. Within each tissue 
slide, we annotated 30 or more instances of a feature type to create the 

A. Sneider et al.                                                                                                                                                                                                                                 



Biomaterials 285 (2022) 121540

4

tissue and non-tissue-based classes. The annotations were verified by a 
trained pathologist. 

2.7. Convolutional neural network architecture 

We used H&E stained slides of breast tumor-adjacent and tumor 
tissues to train the CNN [66]. The slides were scanned at 20×, with a 
spatial resolution of 0.5μm/pixel, and down-sampled using the open-
slide library [67] to a pixel size of 1μm/pixel. Example regions of 
different tissue classes were manually annotated (30+ annotations per 
tissue class) in each individual slide. In this study, we annotated seven 
tissue classes including blood vessels, ducts, fat, tumor cells, wavy 
collagen, straight collagen, and fibrotic tissue; and one non-tissue class 
which we term white space. The CNN was trained and validated in 
MATLAB 2019b with 3600 randomly selected non-repeating image tiles 
per annotation class from all patient slides. Of these 3600 images per 
class, 3000 were used for training, and 300 were used for validation and 
testing. Dropout layers and a window size of 103 pixels × 103 pixels x 3 
channels were used to facilitate the classification of both cellular and 
extracellular classes in the model. We utilized data augmentation ap-
proaches similar to previous augmentation techniques in order to in-
crease our training data size and help prevent overfitting [68,69]. The 
training images were augmented via positive or negative 90◦ rotations to 
increase the training size and prevent overfitting [70–73]. Adam 
(adaptive moment estimation) optimization was used with an initial 
learning rate of 0.013 to train the model. Training finished when vali-
dation accuracy did not improve for five epochs. The network archi-
tecture of the CNN model contains four convolutional layers each 
followed by a batch normalization and rectified linear unit (ReLu) 
layers. The second convolutional layer is followed by a dropout layer of 
0.1. Then there are six convolutional layers in parallel, each with a batch 
and ReLu layer. An additional layer and ReLu layer are added before five 
more convolutional/batch/ReLu layers. There is a max pooling layer, 
convolutional layer, dropout layer of 0.1, batch and ReLu layers. Next, a 
convolutional/batch/ReLu/max pooling set before a fully connected 
layer with batch normalization and ReLu layers. The architecture ends 
with a fully connected layer, batch normalization layer, and softmax 
output layer. By utilizing distinct training, validation, and testing sets, 
we were able to assess our model for signs of overfitting. As our training 
and validation sets came from manual annotations of the same images, 
the validation data assessed CNN performance on unseen combinations 
of annotations from the same images as the training set. As our testing 
set came from annotations of images not included in the training set, the 
testing data assessed the CNN’s ability to classify wholly unseen exam-
ples of our tissue and cellular features. Our model testing accuracy 
(93.0%) was similar to our training accuracy (94.2%) and our validation 
accuracy (93.7%), suggesting that our model was not overfit to our 
training data. 

2.8. Computation of tissue composition 

Classified images were imported into ImageJ. Histogram analysis of 
the whole tissue section provided tissue composition values for global 
stiffness (15 tissue samples, 6 patients). For local stiffness composition, 
the fresh patient tissue image contains the original microindentation 
map overlay. The CNN classified image was scaled and manually 
registered to match the original fresh patient tissue image. Histogram 
analysis inside of 500 μm (62.5 px) diameter circles on the CNN classi-
fied image provided the local stiffness composition (3 tissue samples, 2 
patients). 

2.9. Bivariate and univariate analysis 

MATLAB’s built-in function ‘corr’ was used to perform univariate 
analysis resulting in either a Pearson or Spearman correlation and sta-
tistical significance. MATLAB’s built-in functions ‘glmfit’ and ‘glmval’ 
were used to perform bivariate analysis resulting in a correlation coef-
ficient, fit error, and statistical significance for each pair. The global and 
local stiffness measurements are converted to log base 10 values before 
analysis. The distribution used was ‘normal,’ and the link was ‘identity.’ 
The general form of the equation is:  

μ = Xb                                                                                                

where μ is the response with a normal distribution, X is a matrix of 
predictors, and b is a vector of coefficient estimates. 

The number of patient tissue samples and patients for each param-
eter are as follows: global stiffness – 15 tissue samples, 6 patients; local 
stiffness – 2 tissue samples, 1 patient; breast density quantification – 20 
tissue samples, 8 patients. 

2.10. Heatmaps of tissue composition, mechanical measurements, and 
pathologic features 

Heatmaps of global and local stiffness data were created in RStudio 
using R version 3.6.3 and function superheat. Clustering was performed 
using Euclidean distance with a complete linkage method. 

2.11. Statistical analysis 

Statistical analysis for univariate and bivariate analysis plots and 
tables was performed using MATLAB’s “corr” function. The line of best 
fit was plotted using Prism 6 (GraphPad Software, Inc.). For the breast 
density bar chart analysis, ordinary one-way ANOVAs using Turkey’s 
multiple comparison test with a single pooled variance were performed 
in Prism 6 (GraphPad Software, Inc.). All bar chart graphs are reported 
as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ***p <
0.0001. 

3. Results 

3.1. Deep-learning model classifies essential cellular and extracellular 
matrix features 

Patients received diagnostic breast imaging via mammogram, path-
ologic examination, and characterization, and finally surgery prior to 
release of tissue samples for mechanical measurements, H&E staining, 
and deep learning analysis (Fig. 1a, See Methods). This study presents 
analysis of ten patients, with stiffness measurements on samples from 
nine of the ten patients (Table 1). 

Breast tissue histology is complex and heterogeneous, as many 
components change in content and organization during tumor progres-
sion [58]. Whole slide tissue images regularly contain hundreds of 
thousands to millions of cells within semi-organized stroma. As such, 
exhaustive manual annotation of all cellular and fibrous features within 
histological images is so time intensive as to be infeasible. 
Semi-automatic computational techniques such as deep learning clas-
sifiers address this problem, and have been successful in identifying 
normal and cancerous components in histological sections [74,75]. This 
paper utilizes a CNN-based deep learning pipeline which has previously 
shown success in classification of histological images into pathologically 
relevant subtypes [66]. We identified seven clinically relevant and 
computationally identifiable tissue classes consistent across most tested 
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breast tissues (Fig. 1b and c). The four cell component classes are blood 
vessels (capillaries and venules/arterioles), ducts (excretory, termi-
nal/acini/alveoli), fat, and tumor cells (viable, necrotic) (Fig. 1b). The 
three extracellular matrix (ECM) classes are wavy collagen, straight 
collagen, and fibrotic tissue (Fig. 1c). Second harmonic generation 
confirmed that the wavy and straight ECM classes were fibrillar collagen 
(Fig. 1d). The wavy and straight stromal phenotypes, a distinction which 
has been noted by others [76], were identified from a visual assessment 
of the histology sections. Our eighth class, white space, encapsulates all 

non-tissue space on the images (not shown). 
The CNN successfully identified and classified the seven cell and 

tissue classes stated above in 32 patient tissue samples consisting of 13 
tumor-adjacent and 19 tumor samples from all ten patients (Fig. 2a). The 
confusion matrix details class accuracy in the testing dataset (Fig. 2b). 
Overall testing accuracy was 93.0% (Fig. 2b). All tissue classes were 
identified with greater than 90% sensitivity, except for fat cells at 
89.7%. In this case, fat tended to be misclassified as white space due to 
the chosen image window size in the neural net. Histological subtyping 

Fig. 2. Convolutional Neural Network construction, quantitative and qualitative analysis. a, Schematic showing the division of H&E stained tissue slides (32 tissues, 
10 patients) into data tiles for training, validation, and testing. While each dataset is from the same patient tissue slides, the testing set was developed from a separate 
set of annotations than the training and validation sets. The training images are augmented by rotation [-90◦,90◦] before use in the convolutional neural network 
(CNN). The accuracy of the CNN is determined against the testing sets. Finally, the whole tissue images are classified according to the CNN. b, Confusion matrix 
determining quantitative accuracy of the CNN for the testing set. Cell component classes include blood vessels, ducts, fat, tumor cells, wavy collagen, straight 
collagen, fibrotic tissue, and white space (blank space). 300 images were analyzed per class. Overall model accuracy of 93.0%. c, Qualitative analysis of CNN model 
accuracy showing original histology images side-by-side with the CNN classified image. The first set of images highlights the model’s ability to identify blood vessels 
in both fat and wavy collagen (Fig. 2c,i). The second set of images recognizes the distinction of ducts, both excretory and terminal, in wavy collagen (Fig. 2c,ii). The 
third set of images shows the detection of cancer cells, straight collagen, and fibrotic tissue (Fig. 2c,iii). Scale bars in black are 100 μm. Color legend for each classified 
feature is included in the figure. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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revealed that a subset of luminal A tumors has ductal morphologies, 
which could explain why ducts and tumor cells were misclassified as 
each other 2.5% of the time (Fig. 2b). Wavy collagen was misclassified as 
straight collagen 3.2% of the time, however, straight collagen was never 
mistaken for wavy collagen (Fig. 2b). The successful separation of these 
ECM phenotypes was important for ensuring that we could analyze the 
contribution of the stroma to global and local modulus measurements. 
Any incorrectly classified straight collagen tended to be attributed to the 
tumor cell class, which was most likely a biological result of short 
straight fibers amongst tumor cells. White space misclassified as other 
cellular classes may be due to the presence of lumen (Fig. 2b). Visual 
comparison highlights the trained network’s ability to distinguish his-
tological features even in complex tissue microenvironments (Fig. 2c 
and Supplementary Fig. 1a). 

3.2. Straight collagen strongly correlates with global stiffness 

Histograms of fully classified whole-tissue slides provided cell and 
ECM composition for all tissue samples which can be visualized by order 
of global stiffness, breast density, and patient information (Fig. 3a). 
Stiffness measurements of tumor tissues and tumor-adjacent tissues 
(which served as controls) revealed that both global stiffness and 
composition were heterogeneous within each patient between tumor 
tissue sections and tumor-adjacent sections (Fig. 3a). Mechanically soft 
tissue included the highest percentages of fat and wavy collagen 
(Fig. 3a). The tissues with the highest Young’s moduli contained greater 
percentages of blood vessels, tumor cells, straight collagen, and fibrotic 
tissue (Fig. 3a). 

Further analysis of the data suggested that the Young’s modulus, the 
global stiffness measurement of each tissue, has a logarithmic relation-
ship with each tissue component [77,78]. Plots of the log stiffness value 
versus the percent composition of each class yielded a linear line of best 
fit and associated Pearson correlation. Blood vessels had a significant 
but only moderately strong positive correlation with global stiffness 
(r = 0.61, p = 0.016), suggesting that this relationship was important but 
did not fully describe the system (Fig. 3b,i). Highlighted by the fact that 
tissue with the greatest tumor cell composition belonged to a tissue with 
a stiffness value of 5.8 kPa, while the lowest composition belonged to a 
stiffness of 7.2 kPa (r = 0.46, p = 0.084) (Fig. 3b,ii), tumor stiffness did 
not always increase with the percentage of tumor cells. Neither the 
percentage of fat nor ducts correlated significantly with global stiffness 
(Supplementary Fig. 2a and b). Combining all matrix (non-cellular) 
classes into one category revealed that there was no clear correlation 
(r =−0.12, p = 0.67) between the total extracellular matrix content and 
global breast tissue stiffness (Fig. 3c). This finding may be a result of 
the high percentage of wavy collagen, an ECM class that did 
not significantly correlate with stiffness in each tissue sample 
(Supplementary Fig. 2c). While the percentage of fibrotic tissue showed 
a moderately strong correlation (r = 0.54, p = 0.039) with the Young’s 
modulus of the tissue (Fig. 3d,ii), there was a strong positive correlation 
(r = 0.84, p = 0.0001) between the percentage of straight collagen and 
the Young’s modulus (Fig. 3d,i). Parsing the extracellular matrix classes 
demonstrated that the necessity of evaluating ECM components 
separately from the bulk. 

In the clinic, neoadjuvant chemotherapy is known to be a con-
founding factor in the resulting breast tissue composition as it contrib-
utes to the generation of fibrotic tissue [59,79]. In two patients who 
received neoadjuvant chemotherapy, there was a significantly strong 
positive correlation (r = 0.95, p = 0.0031) between straight collagen and 
Young’s modulus (Fig. 3e). This result suggests that the relationship 
between straight collagen and global stiffness is independent of whether 
a patient has received neoadjuvant chemotherapy. 

The eight patients in the luminal A, non-neoadjuvant chemotherapy 
cohort had mammographically heterogeneously dense breasts (Table 1). 

When quantified, this category spanned a range of 20–50% dense breast 
tissue (Fig. 3f, Table 1). Binning of the percent density into three cate-
gories showed that there was no significant relationship between breast 
density and global tissue stiffness in our study (Fig. 3f). The Spearman 
correlation between the two parameters was effectively zero (Fig. 3f). 

A general linearized model was used to perform bivariate analysis of 
tissue composition classes in the patients without neoadjuvant chemo-
therapy (see methods). The stiffness measurements were converted into 
log scale values prior to running the analysis. The correlation between 
Young’s Modulus and any two tissue classes only slightly increases in 
strength (r = 0.87, p = 0.000026) (Fig. 3g). The effect of straight 
collagen dominates the top five strongest bivariate correlations 
(Fig. 3h), suggesting that straight collagen, and not cellular components, 
is the main determiner of Young’s modulus. The percentage of blood 
vessels in combination with straight collagen yielded the highest cor-
relation (Fig. 3g and h). This result is supported by the above univariate 
analysis (Fig. 3b,i and 3d,i). 

3.3. Straight collagen content correlates with other cellular and 
extracellular classes 

Given the importance of straight collagen composition in deter-
mining breast tissue stiffness, we investigated the relationship of straight 
collagen composition to other cellular and extracellular classes (Fig. 3i 
and j). Tissue stiffness is often discussed and compared based on orders 
of magnitude changes, and frequently visualized on a logarithmic scale 
[77,78]. Unlike Young’s modulus, the quantitative relationship between 
various cellular and extracellular classes has not been extensively 
studied. Thus, we cannot assume that the percentage of straight collagen 
has a linear, proportional response with the other tissue components, 
and have chosen to report the Spearman correlation instead of the 
Pearson correlation. 

There is a significant, moderately strong Spearman correlation (ρs) 
(ρs = 0.69, p = 0.0045) between the percentage of blood vessels and 
straight collagen (Fig. 3i). The positive correlation means that a higher 
percentage of blood vessels moderately parallels a higher percentage of 
straight collagen. The best fit line to describe the relationship was log-
arithmic (Fig. 3j,i). Increased vascular density has been linked to poor 
tumor differentiation and an increase in cancer cell proliferation [80], 
which suggests that there may be a trade-off between vascularization 
and an effort by cancer cells to align collagen. 

The percentage of tumor cells has a strongly positive correlation with 
straight collagen (ρs = 0.91, p = 0.0000024) (Fig. 3i). This relationship 
suggests a near perfect monotonic relationship between these parame-
ters, and agrees with our understanding of tumor biology that tumor 
cells are responsible for restructuring the extracellular matrix to create 
aligned fibers [42,81,82]. The line of best fit for the data based on the 
R-squared value is an exponential curve, however the root mean squared 
error (RMSE) is high using this fit (Fig. 3j,ii). This finding is distinct from 
the earlier observation that the percentage of tumor cells does not 
strongly or significantly correlate with tissue stiffness (ρs = 0.55, p =
0.035; r = 0.46, p = 0.084) (Fig. 3b,ii). The correlations between each 
combination of the three parameters suggest complex relationships be-
tween tumor development through changes in tissue composition and 
mechanical properties like tissue stiffness. 

With respect to the other ECM classes, the percentage of straight 
collagen increased as wavy collagen decreased (ρs = −0.55, p = 0.034) 
and fibrotic tissue increased (ρs = 0.68, p = 0.0054) (Fig. 3i). The best fit 
line for wavy collagen was linear but had a high RMSE (Fig. 3j,iii). The 
degree of collagen curvature, i.e. straight versus curly, was previously 
related to its location from the tumor [76,83,84], and found to be in-
dependent of the grade of malignancy [76]. For fibrotic tissue, the best 
fit line was logarithmic (Fig. 3j,iv). 
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Fig. 3. Young’s modulus (global stiffness) characterization and composition analysis of breast tissue. a, Heatmap including (columns) 15 tissue samples from 6 
patients (P#) clustered using Euclidean distance with complete linkage by (rows) related features. Each parameter is normalized using a z score. The values within 
each feature are color coded by low to high. The heatmap key on the left denotes the following color-coded parameters of each feature: cell component, extracellular 
matrix (ECM) component, pathologic feature, or mechanical measurement. b, Univariate analysis comparing Young’s modulus (global stiffness; kPa) to the percent 
composition of cell component class: (i) blood vessels, (ii) tumor cells; c, extracellular matrix combined; d, (i) straight collagen and (ii) fibrotic tissue; e, straight 
collagen from patients who received neoadjuvant chemotherapy; and f, percent breast density. g, Highest correlated pair of tissue composition classes with Young’s 
Modulus. The Pearson Correlation (r), p-value, r2 value, and error is listed at the top of plots b-e and g. One-way ANOVA was used to perform statistics in f. h, 
Table of top five correlated tissue composition pairs from bivariate analysis using normal distribution and identity link using MATLAB’s glmfit and glmval functions. 
Rank ordered by correlation. The error is the fit-error. i, Plot of Spearman Correlation (ρs) versus the p-value for all cellular and extracellular classes versus straight 
collagen. Values below the dashed line where p = 0.05 are significant. j, Plots showing the monotonic relationship between straight collagen and (i) blood vessels, (ii) 
tumor cells, (iii) wavy collagen, and (iv) fibrotic tissue. Plots in j show the r2 value and root mean squared error (RMSE) at the top of the plot. Plots with square data 
points represent luminal A patients who have not received chemotherapy. Plots with circles represent patients who received neoadjuvant chemotherapy. Each data 
point is color coded by patient. The lines denote the best fit trend line. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 4. Microindentation mapping, characterization, and composition analysis of breast tissue. a, Fresh patient tissue with elastic modulus (local stiffness; kPa) map 
overlay. Scale bar in black is 5000 μm. b, Corresponding Convolutional Neural Network (CNN) classified image of the patient tissue in a with the microindentation 
stiffness (kPa) map overlay. Scale bar in black is 5000 μm. b inset, Inset shows the composition of a representative microindentation point. Scale bar in black is 500 
μm. Bad measurements are listed as NA and do not contribute to the analysis. c, Heatmap clustered using Euclidean distance with complete linkage by (row) each cell 
or extracellular matrix class detailing the percent composition (0–100%). Each column is a different microindentation point organized from the lowest to the highest 
stiffness (kPa) value (49 measurements, 2 tissues, 1 patient). d, Univariate analysis comparing elastic modulus (local stiffness; kPa) to the percent composition of 
straight collagen. e, Bivariate analysis showcasing the tissue composition pair with the highest correlation to local stiffness. The line denotes the best fit line. The 
Pearson Correlation (r), p-value, r2 value, and fit-error is listed at the top of the plot. f, Table highlighting the top five tissue composition pairs correlated with the 
elastic modulus. Rank ordered by correlation. The error is the fit-error. 
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3.4. Local stiffness is best described by straight collagen content 

Local measurements reveal the large variations in stiffness values of a 
fresh patient tissue sample (Fig. 4a). Manual registration of the micro-
indentation values on to the CNN-classified histology image allowed for 
the direct comparison between local elastic moduli and local tissue 
composition (Fig. 4b). Manual registration was necessary since the 
microindentation images and map are performed on whole tissues 
lacking resolution required to identify tissue components, and therefore 
the section must be aligned to the whole tissue image based on whole 
tissue shape and knowledge of microindentation sampling. Composi-
tions were determined for the region directly under the microindenter, i. 
e. a 500 μm-diameter circle (Fig. 4b, inset). Two tissue samples from one 
patient in the luminal A non-neoadjuvant cohort, not previously used in 
the global stiffness analysis, were chosen for the local stiffness analysis 
since the processed samples could be directly matched to the unpro-
cessed images obtained from microindentation mapping. 

Visualizing the increasing local stiffness demonstrates that the in-
dentations with the greatest stiffness values had the highest percentages 
of straight collagen (Fig. 4c). The greatest percentages of tumor cells and 
fat coincided with some of the lower and middle stiffness values 
(Fig. 4c). As with the global Young’s modulus, we considered the loga-
rithm of the local elastic modulus versus the tissue classes. The log of the 
elastic modulus had a significant, moderately strong linear relationship 
with straight collagen (r = 0.57, p = 0.000023) (Fig. 4d). This was the 
only cellular or extracellular relationship to the elastic modulus that was 
significant. Bivariate analysis only slightly increased the correlation of 
the tissue composition classes to the elastic modulus (r = 0.60, p =

0.0000055) (Fig. 4e). Straight collagen again dominated the top five 
correlations (Fig. 4f), suggesting that straight collagen, and not cellular 
components dominates the elastic modulus within the local regions 
measured. The strongest bivariate pair is ducts combined with straight 
collagen (Fig. 4e and f). 

3.5. Breast density does not strongly correlate with tissue classes 

The concept of breast density is often conflated with breast tissue 
stiffness. We showed using global stiffness measurements that quantified 
breast density does not have a clear correlation with Young’s modulus of 
the tissue (Fig. 3f). We sought an answer to the question of which 
cellular or extracellular classes relate to quantified breast density. The 
relationship between component and percentage breast density was 
determined using two methods. The first was through a Spearman cor-
relation (ρs), highlighting a monotonic relationship between ranked 
values (Fig. 5a). The second was by binning the percent breast density 
into three intervals and comparing the composition (Fig. 5b–h). 

The percentage of blood vessels and fat alone did not correlate with 
percent density (Fig. 5a) and was not significantly different from 20 to 
50% dense breast tissue (Fig. 5b). The percentage of ducts had a sig-
nificant, moderately positive correlation with percent of dense breast 
tissue (Fig. 5a). Furthermore, 40–50% dense breast tissue has signifi-
cantly greater percentage of ducts than 20–30% or 30–40% dense breast 
tissue (Fig. 5c). While this initial finding is in line with the current un-
derstanding that dense breast tissue highlights an increase in glandular 
tissue [2], future work spanning a larger patient population (i.e. wider 
range of breast densities, more patients with lower mammographic 

Fig. 5. Breast density does not correlate with tissue composition. a, Plot of Spearman Correlation (ρs) versus the p-value for all cellular and extracellular classes 
versus percent breast density. Values below the dashed line where p = 0.05 are significant. Percent breast density versus cell classes (b) blood vessels, (c) ducts, (d) 
fat, (e) tumor cells; and extracellular classes (f) wavy collagen, (g) straight collagen, (h) fibrotic tissue. When binned, the quantified breast density is related via bar 
chart using a one-way ANOVA. i, Bivariate analysis showing the highest pair of features that correlate with the percent breast density. The r2 value and fit-error are at 
the top of the plot. The line denotes the best fit line. j, Table highlighting the top five tissue composition pairs correlated with the percent of breast density. Rank 
ordered by correlation. The error is the fit-error. 
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breast densities) is necessary to validate this claim. Even though we did 
not find a correlation between tumor cells alone and breast density (ρs =
0.04, p = 0.84) (Fig. 5a), there were more tumor cells in tissues with a 
breast density of 20–30% than 30–40% and 40–50% (Fig. 5e). There was 
no significant correlation between any of the extracellular matrix classes 
and the percent breast density (Fig. 5a), nor was there a significant 
relationship between breast densities within each of the components 
(Fig. 5f–h). Assuming a normal distribution, tumor cells and fibrotic 
tissue combined had a significant and moderately positive correlation 
with breast density (ρs = 0.59, p = 0.0018) (Fig. 5i and j). After this first 
combination, the percentage of ducts dominated the bivariate relation 
(Fig. 5j). 

4. Discussion 

Through tissue component identification using a deep learning 
model, we were able to connect mechanical measurements to patient 
tissue composition. We identified the highest univariate correlate of 
both global and local stiffness to be straight collagen (Fig. 3d,i and 
Fig. 4d). Our findings improve upon and depart from previous work with 
these key discoveries: straight collagen is a biomechanical marker in 
human tissue; straight collagen has strong monotonic relationships with 
other cellular and extracellular classes; Young’s modulus is dependent 
on tissue composition; the fibrillar phenotype is identifiable using H&E 
without SHG or additional staining; and that straight collagen does not 
directly relate to breast density. Furthermore, we use whole tissue slides 
in our analysis affording us both the ability to analyze a greater fraction 
of each tumor than tissue microarrays (TMAs), and to utilize the same 
slides already procured in the clinic for diagnostics and treatment. 

Our results strongly correlating straight collagen to global breast 
stiffness are supported by current knowledge in the field. Previously, 
through the use of TMAs, straightened and aligned collagen was linked 
to poor disease-specific and disease-free survival independent of the 
cancer type, stage of cancer, hormone status, and node status [85]. 
Aligned collagen perpendicular to the tumor acts as a mechanism for 
local invasion by cancer cells [82,86]. This class was proposed as a 
predictor for breast cancer survival, i.e. that increased aligned collagen 
suggests poor prognosis [85,87]. In mice, the elastic modulus of mam-
mary glands was shown to increase in tumors due to collagen cross-
linking, which then forms more fibrillar and aligned collagen [42]. 
Further, in vitro models have been used to show that collagen alignment 
has a positive correlation to matrix stiffness and that stiffness measures 
differ from a macro to a micro scale [88,89]. In ex vivo measurements of 
human breast tissues, the mean Young’s modulus was shown to vary 
based on the tissue and histologic tumor type [90]. In an earlier attempt 
to relate breast tissue stiffness and breast density, the stiffness was 
approximated from a theoretical calculation of breast volume and area 
in a mammogram, not through actual mechanical measurements of the 
tissue [91]. Our results and the above studies show clear links between 
(1) collagen alignment and patient outcome and (2) collagen alignment 
and tissue stiffness. Extrapolating these results to clinical observations, 
these findings provide a possible explanation for the clinical link be-
tween tissue stiffness and patient outcome. 

Treatment of all stroma as a single class would have led to the 
incorrect conclusion that the extracellular matrix does not contribute to 
mechanical stiffness in patient tissue (Fig. 3c). The predominance of the 
wavy collagen phenotype, which on average accounts for 56.6% of the 
classes identified in each tissue section, causes this misleading result 
when the ECM is bundled into a single category. Our results following 
separation of wavy and straight fibrillar collagen and fibrotic tissue 
highlights the importance of separating ECM classes into pathologically 
relevant subtypes. Future analysis, through immunohistochemical and 
immunofluorescent staining, could incorporate the identification of 

immune and stromal cells. 
The relationship between tumor cells, straight collagen, and Young’s 

Modulus is worth briefly discussing as these classes defining stiffer 
tumor sections are in line with the current understanding of tumor 
biology [29,92–95]. Tumor cells have a weak correlation with tissue 
stiffness, despite their strong correlation with straight collagen. We 
think that there is a difference between the maximum stiffness achiev-
able by a cell component versus that of an extracellular class. Tumor 
cells can align collagen but are not stiff themselves; therefore, the 
aligned collagen has a greater contribution to tissue stiffness. 

All patients used in the study of breast density had a luminal A 
subtype and were designated as having categorical heterogeneously 
dense breasts. Within this specific category, the quantified breast density 
ranged between 20 and 50%. In contrast to previously reported litera-
ture, we did not find that mammographic density correlated with 
aligned collagen [96,97]. The different findings could be a result of 
earlier works identifying low and high mammographic density from a 
patient cohort with values predominantly below 20% density [96], or 
with patients across multiple breast density categories [97]. 

Our result urges caution when discussing breast density versus breast 
stiffness. Additionally, this outcome supports the clinically accepted 
separation between findings from palpations and cancer occurrence or 
prognosis [98–100]. Of note, the tissue samples are from regions in or 
near the excised tumor region and may not fully represent the 
non-excised regions of the breast, whereas the breast density determi-
nation is based on the whole breast. We are unable to specifically trace 
back the excised tissue sample to an exact area of high or low 
mammographic density in the mammogram image. Future studies 
would need to know the exact location of the excised tissue to relate the 
tissue composition findings to regions of breast tissue density in mam-
mograms, and utilize a larger patient cohort with a range of categorical 
and quantitative breast density. Furthermore, while we did relate breast 
density to both the Young’s modulus for global tissue stiffness and the 
elastic modulus for local tissue stiffness, there are other types of stiffness 
measurements that could have distinct relationships with breast density. 

5. Conclusion 

In conclusion, we are able to identify the unique correlations be-
tween stiffness, mammographic breast density, and cellular and extra-
cellular matrix features by utilizing a convolutional neural network. We 
propose that straight collagen best correlates with global and local tissue 
stiffness. We find that there is no readily identifiable connection be-
tween tissue stiffness and breast density. 
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M. Tello, T. Osteso-Ibáñez, T. Pellinen, A. Echarri, A. Cerezo, A.J.P. Klein-Szanto, 
R. Garcia, P.J. Keely, P. Sánchez-Mateos, E. Cukierman, M.A. Del Pozo, 
Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors 
tumor invasion and metastasis, Cell 146 (2011) 148–163, https://doi.org/ 
10.1016/j.cell.2011.05.040. 

[30] K.M. Wisdom, K. Adebowale, J. Chang, J.Y. Lee, S. Nam, R. Desai, N.S. Rossen, 
M. Rafat, R.B. West, L. Hodgson, O. Chaudhuri, Matrix mechanical plasticity 

A. Sneider et al.                                                                                                                                                                                                                                 



Biomaterials 285 (2022) 121540

13

regulates cancer cell migration through confining microenvironments, Nat. 
Commun. 9 (2018) 1–13, https://doi.org/10.1038/s41467-018-06641-z. 

[31] Y.A. Miroshnikova, G.I. Rozenberg, L. Cassereau, M. Pickup, J.K. Mouw, G. Ou, K. 
L. Templeman, E.-I. Hannachi, K.J. Gooch, A.L. Sarang-Sieminski, A.J. García, V. 
M. Weaver, α5β1-Integrin promotes tension-dependent mammary epithelial cell 
invasion by engaging the fibronectin synergy site, Mol. Biol. Cell 28 (2017) 
2958–2977, https://doi.org/10.1091/mbc.E17-02-0126. 

[32] M. Nebuloni, L. Albarello, A. Andolfo, C. Magagnotti, L. Genovese, I. Locatelli, 
G. Tonon, E. Longhi, P. Zerbi, R. Allevi, A. Podestà, L. Puricelli, P. Milani, 
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