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ABSTRACT Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogene-
ous disease. Transcriptomic and genetic characterization of DLBCL has increased 

the understanding of its intrinsic pathogenesis and provided potential therapeutic targets. However, 
the role of the microenvironment in DLBCL biology remains less understood. Here, we performed a 
transcriptomic analysis of the microenvironment of 4,655 DLBCLs from multiple independent cohorts 
and described four major lymphoma microenvironment categories that associate with distinct bio-
logical aberrations and clinical behavior. We also found evidence of genetic and epigenetic mechanisms 
deployed by cancer cells to evade microenvironmental constraints of lymphoma growth, supporting the 
rationale for implementing DNA hypomethylating agents in selected patients with DLBCL. In addition, 
our work uncovered new therapeutic vulnerabilities in the biochemical composition of the extracellular 
matrix that were exploited to decrease DLBCL proliferation in preclinical models. This novel classifica-
tion provides a road map for the biological characterization and therapeutic exploitation of the DLBCL 
microenvironment.

SIGNIFICANCE: In a translational relevant transcriptomic-based classification, we characterized the 
microenvironment as a critical component of the B-cell lymphoma biology and associated it with the 
DLBCL clinical behavior establishing a novel opportunity for targeting therapies.
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INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL), the most common 

lymphoid malignancy in adults worldwide, is curable with anti-
CD20–based combination immunochemotherapy in just over 
60% of patients. Over the past few years, several novel targeted 
therapies have been developed, but a substantial fraction of 
patients with relapsed disease continue to die from lymphoma 
or its complications. Further improvement of treatment out-
come relies on elucidating the biology that underlies the clini-
cal behavior of this heterogeneous disease. Gene-expression 
analysis based on cell-of-origin (COO) classification originally 
identified two major subgroups of DLBCL: activated B-cell 
(ABC) and germinal center B-cell (GCB). These subgroups have 
distinct clinical behavior and molecular features, reflecting dif-
ferential pathogenesis (1). More recently, studies of genomic 
alterations in DLBCL cells including mutations, somatic copy-
number alterations, and structural variants identified distinct 
genetic subtypes within the COO subgroups (2–4). Patients 
with ABC-DLBCL with co-occurring MYD88 and CD79B muta-
tions or harboring NOTCH1 mutations have poorer prognosis 
than other ABC-DLBCLs (3). Similarly, lymphomas carrying 

EZH2 mutations and BCL2 translocations are associated with 
worse outcome within the GCB-DLBCLs (3). Meanwhile, lym-
phomas harboring MYC and BCL2 and/or BCL6  rearrange-
ments represent a GCB subgroup with distinctly aggressive 
biology, also referred to as high-grade B-cell lymphoma double- 
hit or triple-hit (HGBL-DH/TH; refs. 5, 6).

The biology and clinical behavior of DLBCL result not 
only from the molecular alterations of DLBCL cells but also 
from their interaction with the microenvironment. Data from 
patients with lymphoma and animal models indicate that in 
the lymphoma niche, external stimuli provided by microenvi-
ronmental cells and the extracellular matrix (ECM) contribute 
to disease development, progression, and response to treat-
ment (7–11). Because the interaction of lymphoma cells and 
the microenvironment is bidirectional (12, 13), it is expected 
that the DLBCL microenvironment will exhibit molecular 
and functional complexities that are yet to be defined. Despite 
the increasingly recognized role of the microenvironment 
in DLBCL biology (10), the majority of the molecular and 
therapeutic studies of this disease have been focused on the 
characterization of the DLBCL cell as an isolated entity (1).

Here, we characterized the DLBCL microenvironment 
based on the transcriptional footprint of microenvironment 
cells and processes in a large cohort of patients. We found 
four distinct microenvironment compositions reflecting 
unique biological properties and clinical behavior. These newly 
described categories associate with distinct clinical behavior 
of genetically similar DLBCLs and provide an array of novel 
potential targets for innovative therapeutic interventions.

RESULTS
The Lymphoma Microenvironment Is Characterized 
by Four Distinct Categories

We aimed to define the diversity in the composition and 
functionality of DLBCL microenvironments based on the 
statistical power conferred by gene-expression profiles of 
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thousands of patients. As a first step toward this end, we 
generated 25 Functional Gene Expression Signatures (FGES) 
reflecting either distinct cellular subtypes relevant to tumor 
microenvironment (e.g., cancer-associated fibroblasts and 
tumor-infiltrating lymphocytes), noncellular components 
of the tumor microenvironment (e.g., immune-suppressive 
cytokines and ECM), biological processes (e.g., secretion and 
proliferation), or canonical signaling pathway activation 
(e.g., PI3K and NFκB; Fig. 1A; Supplementary Fig. S1A–S1C; 
Supplementary Table S1). For each FGES we calculated an 
activity score that is directly associated with the magnitude 
by which a particular effect is present among populations 
of cells. For example, PI3K and NFκB FGES are sensitive 
enough to detect changes in pathway activity upon their 
specific inhibition in DLBCL cell lines and mouse models 
(Supplementary Fig.  S1D and S1E). Activity scores of the 
FGES revealed the expected enrichment for the cell types 
from which they derive (Fig.  1B; Supplementary Fig.  S1B 
and S1C), as well as potentially novel functional inter-
dependencies. For example, although the ECM FGES was 
almost exclusively correlated with fibroblasts, the “ECM 
remodeling” FGES was also correlated with activated mac-
rophages (Fig. 1B), suggesting a potential role for these cells 
in the ECM microarchitecture. Similarly, they informed on 
cell states; for example, the biological process “cell prolifera-
tion” FGES was almost absent in nonproliferating circulating 
B cells and progressively higher in B-cell lymphomas rang-
ing from low-proliferating indolent follicular lymphomas 
(FL) to DLBCLs and the highly proliferative Burkitt lym-
phomas (BL; Fig. 1B).

To validate whether the FGES was still informative when 
applied to gene-expression profiles derived from tissues with 
mixed cell types, we analyzed the activity score of the “cell 
proliferation” FGES in a cohort of 4,984 B-cell lymphoma gene-
expression profiles including FL, DLBCL, and BL and found 
that, similar to individual cells, the activity score of these FGES 
directly correlated with the proliferation rate reported for 
these diseases (Fig. 1C). Moreover, as an additional independ-
ent validation, the “cell proliferation” FGES also correlated 
with the proliferation rate determined by “gold-standard” 
Ki-67 IHC of 532 B-cell lymphoma samples (Fig.  1D). Last, 
we proved that the proportion of “fibroblasts” and “activated 
macrophages” estimated by FGES correlated with the estima-
tion of these cells obtained from anti-SMA and anti-CD68 
immunostaining quantification from matched DLBCL tis-
sues (Supplementary Fig. S1F).

We then used the 25 FGES to virtually reconstruct the 
lymphoma microenvironment (LME) of 4,580 DLBCL cases 
collected from publicly available gene-expression databases 

and included an additional set of 75 DLBCLs profiled 
by RNA sequencing (RNA-seq) locally (Supplementary 
Fig. S2A). We analyzed the correlation between FGES among 
samples by applying an unsupervised community detec-
tion algorithm (Fig.  1A) and obtained four major clusters 
of LMEs (Fig.  1E). These four LMEs reflect distinct FGES 
associations or “communities,” and were present in 15% 
(LME-1), 33% (LME-2), 25% (LME-3), and 27% (LME-4) of 
the samples, with similar distribution across all tested data 
sets (Fig.  1E; Supplementary Fig.  S2B–S2F). According to 
the communities of FGES enriched within each microenvi-
ronment, the four distinct LMEs were termed, respectively, 
as “germinal center-like” due to the presence of FGES from 
cell types commonly found in germinal centers (GC; ref. 
14); “mesenchymal” (MS) for the abundance of FGES from 
stromal cells and ECM pathways; “inflammatory” (IN) for 
the presence of FGES associated with inflammatory cells and 
pathways; and finally, a “depleted” (DP) form that, contrast-
ing with the other LMEs, was characterized by an overall 
lower presence of microenvironment-derived FGES (Fig. 1E).

LME Categories Represent a Novel Gene 
Expression–Based DLBCL Classification

We developed a platform-independent algorithm to classify 
individual lymphomas according to their ABC-DLBCL versus 
GCB-DLBCL COO subtype (Supplementary Fig. S3A–S3C; 
Supplementary Table S2). Among the full cohort (n = 
4,655), 59% were GCB-DLBCLs and 41% were ABC-DLBCLs 
(Supplementary Fig. S3C). These DLBCL subtypes varied in 
their LME associations. For example, whereas the IN-LME 
subtype contained a higher proportion of ABC-DLBCLs, 
the GC-like and MS LMEs were more enriched in GCB-
DLBCLs (Fig.  2A, P < 0.001, χ2 test, all comparisons). For 
the subsequent analysis requiring different molecular or 
clinical annotations, we used the largest possible subset of 
the data that had the required information (Supplementary 
Fig.  S2A). We investigated the association of LME catego-
ries with the Consensus Clustering Classification (CCC; ref. 
15) gene-expression subtypes B-cell receptor (BCR), oxida-
tive phosphorylation (OxPhos), and host response (HR). As 
might be expected, the DP-LME was not associated with 
HR cases, whereas BCR and OxPhos did show specific LME 
patterns (Supplementary Fig.  S3D). In addition, the MS-
LME was enriched in the previously described “stromal-1” 
and “stromal-2” transcriptional signatures (ref. 10; Supple-
mentary Fig. S3E).

Notably, HGBL-DHs were enriched in DP-LME and sec-
ondarily in GC-LME according to the analysis of 1,397 
cases with these data available (Supplementary Fig.  S3D). 

Figure 1.  Transcriptomics analysis distinguishes four distinct subtypes of the DLBCL microenvironment. A, Overview of the transcriptomic approach 
to identify LME signatures in DLBCL. B, Association between FGES represented on the y-axis with cell types on the x-axis where different colors represent 
unique cell types. The strength of the association is represented with red intensities with light gray indicating no association. C, Activity score of the “cell 
proliferation” FGES represented across B-cell lymphomas including 130 FL, 4,655 DLBCL, and 196 BL. D, Spearman rank correlation between the activity 
score of the “cell proliferation” FGES and the percentage of Ki-67-positive nuclei determined by IHC in 532 B-cell lymphomas. E, Heat map of the activity 
scores of 25 FGES (x-axis) denoting four major LME clusters termed as GC-like, mesenchymal, inflammatory, and depleted. Individual data sets are indi-
cated by different colors. LEC, lymphatic endothelial cells; VEC, vascular endothelial cells; CAF, cancer-associated fibroblasts; FRC, fibroblastic reticular 
cells; ECM, extracellular matrix; IS, immune suppressive; IA/AL, immune activating/antilymphoma; FDC, follicular dendritic cells; MHC, major histocom-
patibility complex; TFH, follicular T-helper cells; TIL, tumor-infiltrating lymphocytes; NK, natural killer cells. ***, P < 0.001.
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Concurrent rearrangements of MYC and BCL2 are not the 
only molecular determinants of aggressiveness in DLBCL. 
Two gene-expression signatures, the molecular high-grade 
(MHG) and the DHL signature (DHITsig; ref. 16), identi-
fied additional patients who behave as HGBL-DH without 
necessarily having these genomic alterations. We devel-
oped and applied the DHITsig classifier (Supplementary 
Fig.  S4A–S4G; Supplementary Table S3) to our collected 
data set in relation to LME categories and found a sig-
nificant enrichment of MHG and DHITsig patients in the 
DP-LME category (Supplementary Fig.  S3D). Moreover, 
the MHG and DHITsig were highly overlapping (Supple-
mentary Fig.  S4D), likely reflecting a similar underlying 
biology. Last, in a mouse model engineered to express Myc 
and Bcl2 in GC B cells, the resultant B-cell lymphomas har-
bor an LME that is similar to DP-LME DLBCLs (P < 0.001; 
Supplementary Fig. S4H).

DLBCLs were recently classified into genetically defined 
entities with distinct clinical characteristics (2–4), some of 
them also associated with microenvironmental features (4). 
One of these efforts (4) grouped DLBCL into the subtypes 
MCD (co-occurrence of MYD88 and CD79B mutations), 
N1 (NOTCH1 mutations), EZB (EZH2 mutations and BCL2 
translocations), BN2 (BCL6  fusions and NOTCH2 muta-
tions), ST2 (SGK1 and TET2 mutations), and A53 (aneuploid 
with TP53 inactivation). The genetic annotation was avail-
able from 737 cases from two cohorts (NCICCR and DLC2), 
and revealed uneven distribution of the four LME categories 
(Fig.  2B). For example, the poor-prognostic MCD subtype 
represented 4% of GC-like, 8% of MS, 17.6% of IN, and 21% 
of the DP-LME categories (P < 0.001, χ2 test; Fig.  2B). The 
MCD distribution in LMEs was not in full agreement with 
the proportion of ABC cases. Although a majority of BN2, 
ST2, and EZB cases had an immune-deserted LME (either 
MS or DP), in EZBs the specific immune-deserted LME cat-
egory was associated with their MYC status: EZB-MYC+ had 
a higher proportion of DP-LMEs, whereas EZB-MYC− had 
more MS LMEs (Fig. 2B). Taken together, these data indicate 
that DLBCL LME categories provide additional orthogonal 
information that is not captured by previously reported lym-
phoma classifications.

LME Categories Associate with Specific Genomic 
Alterations in Lymphoma Cells

The LME is dependent on dynamic interactions between 
tumor and normal cell types. To better understand the 
effect of lymphoma cells in driving specific LME pattern-
ing, we established 18 patient-derived tumor xenografts 

(PDTX) by implanting DLBCL tissues from patients into 
immunosuppressed mice. We then performed RNA-seq in 
tumors from early passages of each PDTX and used our cell 
signature deconvolution approach to determine whether 
murine LME cells were repopulating the PDTX in propor-
tions similar to those from the primary human tissue. 
Remarkably, the majority of PDTXs maintained similar 
murine LME categories as were represented in the origi-
nal primary human lymphoma (Fig.  2C; Supplementary 
Fig. S5A and S5B). Because recipient mice are immunosup-
pressed, the immune components of the LME were largely 
maintained from the human primary tissues in early pas-
sages. In contrast, the LME stromal cells, like cancer-associ-
ated fibroblasts (CAF) and tumor-associated macrophages 
(TAM), were recruited from the mouse tissues (Fig. 2C), as 
has been reported in breast cancer PDTX specimens (17). 
This suggests an underlying, long-lasting mutual signaling 
wiring between malignant and LME cells that is maintained 
in early-passage PDTXs.

To explore mechanisms by which lymphomas might 
induce specific LMEs, we compared their spectra of muta-
tions and copy-number alterations (CNA). Mutations 
were obtained from whole-exome sequencing (WES) and/
or whole-genome sequencing (WGS) or targeted sequenc-
ing from 747 patients, whereas whole-genome CNA were 
available for 750 patients (Supplementary Fig.  S2A). The 
analysis of the 86 most frequent mutations and the 65 
most frequent CNAs (Supplementary Fig.  S6A and S6B; 
Supplementary Tables S4 and S5) showed uneven distri-
bution among LME categories with 24 mutations and 22 
CNAs significantly enriched in a particular LME (Fig. 2D). 
Importantly, the distribution of LME categories for 9 of 
these unequally distributed 24 mutations and 6 of the 22 
CNAs was not entirely explained by their COO designation 
(Fig.  2D), and so are potentially linked to direct effects of 
these mutations. Remarkably, some mutations and CNAs 
targeting the same gene converged in a particular LME as 
was the case for CD44 with the MS-LME and for TMEM30A 
with the DP-LME (Fig. 2D).

Because CNAs and/or mutations targeting functionally 
related genes may result in similar phenotypes, we analyzed 
such complementary genomic alterations in relation to LME 
categories. We considered all genomic aberrations annotated 
to a pathway independent of their individual statistical sig-
nificance. We found that genomic alterations resulting in 
decreased p53 activity and perturbation of cell-cycle regula-
tion were more common in DLBCL with DP-LME (Fig.  2E 
and F). This was validated in an independent data set of 67 

Figure 2.  Association of LME categories with genomic alterations in DLBCL cells. A, Distribution of the DLBCL cell-based COO transcriptomic signa-
ture subgroups within the LME categories. B, Distribution of DLBCL genomic subtypes MCD, N1, A53, BN2, ST2, EZB, composite, and others within LME 
categories. C, LME cellular composition (first column for primary samples and second column for their PDTX) and LME origin (mouse vs. human, third col-
umn). Upper columns represent percentage of total LME cells and lower columns the percentage of stromal LME cells. The proportion of LME versus lym-
phoma cells in primary samples is shown on top of the columns. D, Mutations and CNA significantly enriched (Fisher t test) in a particular LME category. 
Alterations also significantly enriched in a COO subgroup are indicated. E, Oncoplot for genomic alterations affecting the proliferation pathway genes 
CDKN2A, TP53, and CCND3 by LME category. F, Prevalence of proliferation pathway genomic alterations by LME category according to their expected 
random distribution. The number of cases with these genomic alterations is shown. G, Oncoplot for genomic alterations affecting antigen presentation 
genes B2M, CIITA, and EZH2 and G-protein signaling pathway genes GNAI2, GNA13, and P2RY8 by LME categories. H, Prevalence of antigen presentation 
and G-protein signaling pathway genomic alterations by LME category according to their expected random distribution. The number of cases with these 
genomic alterations in each category is shown.
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DLBCLs (18), in which 90% of DP-LMEs showed complex 
CNAs affecting this pathway compared with >60% for the 
other LMEs (P < 0.04; Supplementary Fig. S3D). Accordingly, 
DP-LMEs also had a higher proportion of A53 lymphomas 
(Fig.  2B) and strong enrichment for the “cell proliferation” 
FGES as later characterized. Recent data (19) showed expres-
sion of MHC I and MHC II antigen presentation genes and 
corresponding sparsity of immune infiltrates in murine lym-
phoma models expressing Ezh2Y641. In agreement with these 
data, EZH2 genomic alterations as well as mutations in B2M 
or CIITA that affect MHC I or MHC II, respectively, were 
enriched in MS-LME (Fig. 2G and H). In addition, MS-LME 
cases were enriched for mutations in GNA13, GNAI2, and 
P2RY8 (Fig. 2G and H). Mutations in GNA13/I2 and/or P2RY8 
disrupt the Gα signaling pathway that is necessary to trans-
duce homing signaling to lymphoma cells from surrounding 
immune cells (20), which are depleted from this LME, prob-
ably suggesting the acquisition of LME-independent growth 
mechanisms by lymphoma cells.

LME Categories Associate with Distinct  
Disease Courses

LME-GC–like and LME-DP had, respectively, the highest 
proportion of low (0–1) and high (4–5) international prog-
nostic index (IPI) scores (Supplementary Fig. S7A). To deter-
mine the association of the LME categories with response 
to R-CHOP chemoimmunotherapy, we compiled and per-
formed RNA-seq of a cohort of 105 newly diagnosed patients 
with DLBCL who were balanced between responders (55%) 
and nonresponders (45%) including refractory (i.e., never 
achieved complete response) and relapsed (i.e., free from 
disease < 2 years). The number of responders was highest 
in GC-like– and lowest in DP-LME patients (Fig. 3A; Z tests 
P = 0.030 for GC-like vs. DP and P = 0.022 for GC-like + MS 
vs. IN + DP). In contrast, DP-LME had the highest propor-
tion of nonresponders and specifically of relapsed cases 
(Fig.  3A; 40.5% vs. 16.2% for DP-LME vs. all other LMEs, 
respectively, Z test P = 0.011). These associations were vali-
dated in an independent cohort of 1,349 unselected patients 
with DLBCL who received chemoimmunotherapy and were 
evaluated according to the RECIL criteria. The proportion 
of nonresponders (SD + PD) was 4.5%, 7.3%, 11.1%, and 
12.7% for GC-like, MS, IN, and DP-LMEs, respectively (Sup-
plementary Fig. S7B; Z test P = 5 × 10−4 for GC-like + MS vs. 
IN + DP-LMEs).

We further analyzed the association of LME categories 
with overall survival (OS) and progression-free survival 
(PFS) in patient cohorts of 2,646 and 2,189 DLBCLs, respec-
tively. All patients received rituximab-based chemoimmu-
notherapy resulting in typical OS and PFS Kaplan–Meier 

curves (Supplementary Fig.  S7C and S7D). Analysis of OS 
by LME indicated significant differences in prognosis from 
better to poor as follows: GC-like, MS (P = 0.03, vs. GC-like), 
IN (P = 0.0008, vs. MS), and DP (P = 0.007, vs. IN) LMEs 
(Fig. 3B), whereas GC-like and MS have similarly favorable 
PFS curves (P = 0.9) followed by IN (P < 0.001) and DP 
(P = 0.03, vs. IN), which presented with the poorest PFS 
(Fig.  3C). Bonferroni correction for multiple testing indi-
cates that GC-like and MS are in the same strata for OS and 
PFS, as well as IN and DP for PFS. LME categories associ-
ated with different proportions of cases achieving OS and 
PFS at 24 months (OS24 and PFS24, respectively; Fig. 3D; 
Supplementary Fig. S7E).

When segregated by COO, the DP-LME retained the 
poorest OS and PFS in both COO subtypes. However, in 
ABC-DLBCL, the LME with the best PFS and OS was MS, 
and in GCB-DLBCL, the best LME was GC-like (Fig.  3E; 
Supplementary Fig.  S7F), suggesting that the biological 
impact of the microenvironment may be different depend-
ing on lymphoma subtype (21). Accordingly, individual 
LME cell subtypes contributed differently to OS in ABC- 
and GCB-DLBCLs (Fig.  3F). Overall, the combination of 
GCB-DLBCL with GC-like LME and ABC-DLBCL with DP-
LME resulted in the most favorable and poorest clinical 
outcome, respectively (Fig. 3E; Supplementary Fig. S7F). In 
multivariate Cox-proportional hazard analysis for PFS (n = 
2,024) and OS (n = 2,052) controlled for COO and IPI, the 
LME subtypes remained informative, with GC-like and MS 
LMEs associated with better outcome (Fig. 3G; Supplemen-
tary Fig. S7G).

Finally, HGBL-DH, which carry significantly lower PFS and 
OS than DLBCL with neither MYC nor BCL2 rearrangements 
(Supplementary Fig.  S7H), modified their outcome when 
LME was considered. HGBL-DH with the favorable prognosis 
LMEs GC-like and MS had significantly better PFS and OS 
than HGBL-DHs with the unfavorable prognosis LMEs IN 
and DP (Fig.  3H; Supplementary Fig.  S7H). In multivariate 
Cox-proportional hazard analysis for OS (n = 486) controlled 
for COO, IPI, and MYC or BCL2 rearrangements, the LME 
subtypes remained informative, with GC-like and MS LMEs 
associated with better outcome (Supplementary Fig.  S7I). 
The same was true among the DHITsig-positive DLBCLs, i.e., 
poor-prognostic GCB-DLBCLs with high-grade molecular 
features including concurrent MYC and BCL2 rearrangements 
(ref. 16; Fig. 3I and J; Supplementary Fig. S7J and S7K). Col-
lectively, these data underline the impact of the LME category 
on outcome regardless of COO subgroup or genetic subtype, 
suggesting that these host factors make truly critical and 
independent contributions to lymphoma biology and clinical 
presentation.

Figure 3.  Association of DLBCL LME categories with clinical outcome. A, Response to chemoimmunotherapy (R-CHOP) in a balanced cohort (n = 105) 
or patients with responsive and nonresponsive (refractory and relapsed) DLBCL according to the LME category. B and C, Kaplan–Meier models of OS and 
PFS, respectively, according to DLBCL LME category. D, PFS at 24 months (PFS24) in DLBCL patients according to the LME category. Censored patients 
are not shown. E, Kaplan–Meier models of PFS according to LME category in ABC- and GCB-DLBCL subgroups. Only statistically significant pairwise 
comparisons are shown. F, Contribution individual LME cellular subtypes to the OS hazard ratio (HR) (log with 95% CI) in ABC- (top) and GCB-DLBCLs 
(bottom); Tregs, Regulatory T cells. G, PFS hazard ratio (HR) plots (log with 95% CI) for LME category, COO subgroup, and IPI. H, Kaplan–Meier models 
of OS for HGBL-DH patients segregated into favorable prognosis LMEs (GC-like and MS) and unfavorable prognosis LMEs (IN and DP). I, Kaplan–Meier 
models of OS for DHITsig-positive patients segregated into favorable prognosis LMEs (GC-like and MS) and unfavorable prognosis LMEs (IN and DP). 
J, OS hazard ratio (HR) plots (log with 95% confidence interval, n = 2,047) for LME category, COO subgroup, IPI, and DHITsig status.
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LME Categories Are Composed of  
Distinct Cellular Communities

To further understand the nature of each LME category, 
we expanded the community analysis of FGES signatures by 
estimating cell percentages in the LME using an RNA-seq 
deconvolution algorithm (22). This allowed us to more 
precisely define cell subpopulations and estimate their 
abundance. We validated this approach to cellular compo-
sition analysis by comparing and contrasting the results 
with mass cytometry performed on reactive tonsillar tis-
sues (Supplementary Fig.  S8A). In addition to cellular 
composition, we also investigated the enrichment of the 
LME-dependent signaling and transcriptional pathways 
hypoxia-inducible factor (HIF), TGFB/SMAD, JAK/STAT, 
and TNF.

The GC-like LME resembled the cellular constitution of 
the GC microenvironment (14) since it contained a relatively 
higher proportion of follicular dendritic cells, lymphatic 
endothelial cells, total T cells, and several CD4+ T-cell sub-
populations including regulatory T cells (Treg) and Th cells 
(Fig. 4A and B). The ratio of malignant to normal B cells was 
lower in this subtype. The FGES for cell proliferation activity 
that primarily captures the activity of malignant cells was 
lower compared with other LME categories (Supplementary 
Fig. S8B). These lymphomas may thus represent transformed 
variants of indolent, GC-derived FLs. Further supporting this 
notion, 28% of GC-like LME cases harbored the FL hallmark 
BCL2 translocation and 90% of the LMEs profiled in a cohort 
of the 132 FLs were also GC-like (Supplementary Fig.  S8C 
and S8D). Community analysis of the MS-LME indicated a 
higher proportion of signatures from vascular endothelial 
cells, CAF, fibroblastic reticular cells, and ECM (Fig. 4C and 
D). In addition, there was enrichment for angiogenesis and  
ECM remodeling process FGES (Supplementary Fig.  S8E)  
and TGFB/SMAD and HIF pathways (Fig.  4E), which are 
associated with good prognosis in DLBCL (23–25). Notably, 
MS-LME was highly enriched among primary mediastinal 
B-cell lymphomas versus other LME subtypes (n = 287 total 
cohort, P = 0.003; Supplementary Fig. S8C).

Among the unfavorable LME categories, the IN-LME was 
enriched in neutrophils FGES associated with poor outcome 
(26), macrophages (likely M1; Supplementary Fig. S8F), CD8+ 
T cells (over total T cells or over CD4+ T cells; Supplemen-
tary Fig.  S8F), and the subset of CD8+ T cells with high 
PD-1 expression (Fig. 4F and G). The proportion of natural 
killer (NK) cells was not significantly different among LMEs; 
however, the NK activity by FGES was significantly higher 
in IN-LME (Supplementary Fig.  S8F). This finding plus an 
enrichment of cytotoxicity activity as determined by the cyto-
lytic score (ref. 27; Fig. 4H) and presence of T-cell activation 
markers suggests a certain degree of antilymphoma immu-
nity. Indeed, DLBCL with IN-LME presented with the lowest 
relative number of malignant cells and lower mutational 
load (Fig.  4I), potentially representing lymphoma cells that 
may be able to escape tumor immunity (28, 29). The IN-LME 
had features that may contribute to decrease lymphoma 
immunity such as enrichment of immune-suppressive and 
prolymphoma cytokines (including the neutrophils attract-
ant CXCL8, ref. 30; as well as IL10, refs. 31–34; Fig.  4J), 

and expression of the immune-checkpoint molecule PD-L1 
(33, 34) and the tryptophan catabolic enzyme indoleamine  
2,3-dioxygenase 1 (IDO1; refs. 35, 36; Fig.  4K). As might be 
expected from this inflammatory milieu given the presence of 
macrophages and neutrophils FGES in particular (37), there was 
a significantly higher activity of the signaling pathways NFκB 
(ref. 38; only partially associated with the COO subgroup; 
Supplementary Fig.  S8G), JAK/STAT (34, 38), and TNF (39) 
compared with the other LME categories (Fig. 4L).

DNA Methylation Patterning of Lymphoma Cells 
Contributes to a Depleted Microenvironment

DLBCLs with a DP-LME were characterized by a minimal 
presence of FGES derived from microenvironmental cells as well 
as by higher proportions of proliferating tumor cells (Fig. 5A) 
and clonal tumor cells (Fig.  5B; Supplementary Fig.  S9A). 
This category of LME was also common in patients with BL 
(Supplementary Fig. S8C). DP-LME is also characterized by 
activation of the PI3K signaling pathway (Supplementary 
Fig.  S9B), suggesting potential therapeutic vulnerabilities. 
Higher tumor cell proliferation was insufficient to account 
for the scarcity of FGES derived from microenvironmental 
cells. Indeed, a majority of the tumor cells stained negative 
for MHC I and II (by IHC) than any other LME (n = 177, P =  
0.04; Fig.  5C), although there was no enrichment of MHC 
mutations in this group. We and others have previously 
reported (23, 24) that aberrant DNA hypermethylation of the 
SMAD1 promoter allows DLBCL cells to escape from the anti-
proliferative effects of LME-derived TGFB ligands. Indeed, 
analyzing our cohort and the TCGA cohort of 100 DLBCLs, 
we found that the degree of global DNA hypermethylation 
and specific SMAD1 promoter methylation were significantly 
higher among DP-LME (Fig.  5D; Supplementary Fig.  S9C). 
Accordingly, the SMAD1 expression and TGFB pathway activ-
ity were also lower (Fig.  5E; Supplementary Fig.  S9D and 
S9E). In the full data set, DLBCL with DP-LME had lower 
SMAD1 expression and TGFB pathway activity than any other 
LME (Fig. 5F).

To determine the contribution of aberrant DNA hyper-
methylation to this microenvironmental scenario, we used 
the A20 syngeneic murine B-cell lymphoma model, which 
we characterized as having a similar LME constitution as 
patients with DP-LME DLBCL (Fig. 5G). Once tumors devel-
oped in the treatment cohort (n = 12), we exposed the mice 
to the DNA hypomethylating agent azacitidine or vehicle 
for four consecutive days and then performed RNA-seq and 
DNA methylation sequencing of the tumors (Fig. 5H). Aza-
citidine treatment resulted primarily in gene upregulation 
and hypomethylation (Supplementary Fig.  S9F and S9G). 
Pathway analysis of significantly hypomethylated gene pro-
moters and upregulated genes revealed regaining of “cellular 
response to cytokines,” “signal transduction,” and immune 
response including “activation of T cells” (Fig.  5H; Supple-
mentary Table S6). There was upregulation of Smad1 as well 
as increased TGFB pathway activity (Fig.  5I). In addition, 
there was induction of MHC class I and II expression and an 
increased proportion of CD4+ T cells by transcriptome decon-
volution (Fig. 5I) and increase in the distribution of tumor-
infiltrating T cells by IHC analysis [4.7% (q25–75: 2.9–7.3) vs. 
18% (q25–75: 14.65–18.9), vehicle vs. azacitidine, P < 0.001 
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Mann–Whitney test, Fig. 5J]. Overall, these data indicate that 
cytosine methylation patterning of lymphoma cells may con-
tribute to a depleted LME.

LME Heterogeneity Decreases  
with Disease Progression

To explore the notion that LME cellular composition 
changes during evolution of lymphomas, we first established 

a series of temporally ordered conditions representing early 
and late stages of lymphoma development. In each sam-
ple, we established the LME composition by transcriptome 
signature deconvolution and measured its complexity by 
Shannon entropy metric, which has two components: the 
number of unique cell subtypes (richness) and their equality 
of distribution (evenness). The Shannon metric directly cor-
responds with the LME cellular heterogeneity. We obtained 

Figure 4.  Distinct cellular communities define DLBCL LME categories. A, Proportion of LME cells significantly enriched in the GC-like LME obtained 
by cell deconvolution algorithms or FGES. B, Schematic representation of selected features of GC-like-LME. FDC, follicular dendritic cells; LEC, lymphatic 
endothelial cells; TH, T helper cells. C, Proportion of LME cells significantly enriched in the MS-LME obtained by cell deconvolution algorithms or FGES. 
D, Schematic representation of selected features of MS-LME. VEC, vascular endothelial cells; FRC, fibroblastic reticular cells; CAF, cancer-associated 
fibroblasts. E, HIF1 (hypoxia) and TGFB pathways activity. F, Proportion of LME cells significantly enriched in the IN-LME obtained by cell deconvolution 
algorithms. G, Schematic representation of selected features of IN-LME. TAM, tumor-associated macrophages. H, Cytolytic score in the IN-LME versus 
other LMEs. I, Lymphoma cellularity (proportion of malignant cells) and mutational load (number of mutations per cell) in DLBCL containing IN-LME ver-
sus other LMEs. J, Immune-suppressive/prolymphoma cytokines FGES in the IN-LME versus other LMEs. K, Expression of PD-L1 and IDO1 in lymphomas 
with IN-LME versus other LMEs. L, NFκB, JAK/STAT, and TNFα pathway activity. **, P <0.01; ***, P < 0.001.
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paired samples from diagnostic and relapsed DLBCL (n = 
1), indolent FL and transformed (t) FL (n = 5), early and 
late murine lymphoma progression (n = 1), and premalig-
nant lymph node and nodal lymphoma from genetically 
engineered mouse models expressing in GCB cells Myc + 
Bcl2, Ezh2 mutant + Bcl6 , or Kmt2d + Bcl2 (n = 3; Fig. 6A). We 
observed that the complexity of the LME, measured as the 
Shannon entropy, decreases with lymphoma development 
of progression by approximately 40% (95% CI, 20%–60%, P = 
0.001, paired t test; Fig. 6A). This effect is more notorious in 
the decreasing intratumoral content of T cells, which agrees 
with recent data demonstrating a significant reduction in 
tumor T-cell infiltration in paired diagnostic compared with 
relapsed DLBCLs (40).

To characterize the tendency of the LME to immune deser-
tion as a function of lymphoma progression in a bigger scale, 
we applied a pseudotime algorithm to reconstruct LME 
temporal dynamics using individual samples as points in this 
trajectory. Using the space of the 25 FGES we projected 2,128 
ABC- and 2,867 GCB-DLBCL samples (Fig. 6B). The immune-
rich GC-LME that resembles the cellular constitution of the 
GC microenvironment (14) was considered as the starting 
point. The LME Shannon entropy for individual DLBCL sam-
ples demonstrated an inverse association with the pseudo-
time (Fig. 6C; Supplementary Fig. S10A, R = −0.51, P < 0.001) 
and with the epigenetic age (41, 42) of the lymphoma (Sup-
plementary Fig. S10B, MethylAger R = −0.52, P < 0.001 and 
epiCMIT R = −0.58, P < 0.001). The projection of FL (n = 37),  
transformed follicular lymphoma (tFL; n = 33), and de novo 
DLBCL (n = 267) from two cohorts onto the GCB-DLBCL 
LME pseudotime also demonstrated an association between 
lower LME complexity and higher LME pseudotime (Fig. 6D). 
Furthermore, the projection of five paired FL and tFL samples 
also showed this tendency (Fig.  6D). Similar to lymphoma-
paired samples, the LME pseudotime progression was associ-
ated with a decrease in the tumor-infiltrating T cells (Fig. 6E). 
This notion could indicate that lymphoma cells may acquire 
or select for mechanisms decreasing T-cell infiltration, result-
ing in immune-deserted LMEs.

CAFs Produce a Lymphoma-Restrictive ECM
In the tumor microenvironment, the ECM is primarily 

produced and remodeled by the balanced activity of TAMs 
and CAFs. We thus determined whether the ratio of FGES for 
TAM versus CAF affects prognosis. The TAM/CAF ratio asso-
ciated with higher risk of death (HR: 9.1), an effect observed 
to some degree in all LME subtypes but that was particularly 

strong in DP-LME with an HR: 4.4 (Fig.  7A). To determine 
which ECM components are more likely to be associated with 
the activity of CAFs versus TAMs, we conducted unbiased 
proteomic analysis of the ECM (matrisome; Fig.  7B) of 18 
primary DLBCLs, using the matrisome of inflamed tonsils as 
a control for normalization. We had enough material in 14 of 
these DLBCLs to conduct RNA-seq that we used to estimate 
TAM/CAF, LME, and COO. We identified 131 proteins in 
the DLBCL matrisome distributed as glycoproteins, ECM 
regulators, collagens, ECM-affiliated, secreted factors, and 
proteoglycans (Supplementary Table S7), clustering in three 
matreotypes (Fig.  7C). Two matreotypes (termed Fm1 and 
Fm2) associated with a higher proportion of CAFs and had 
a higher proportion of collagens and proteoglycans (Fig. 7C), 
whereas the third matreotype containing a higher proportion 
of ECM-affiliated and secreted proteins had a higher expres-
sion of TAMs (thus termed Mm; Fig. 7C). Reflecting on the 
low expression of FGES, DP-LME DLBCL had relatively low 
ECM abundance (Fig.  7C). To dissect cellular contributors 
to the DLBCL ECM, we correlated the matrisome genes with 
their median expression in 15 LME cell subtypes and DLBCL 
cells to obtain their probability of expression according to cell 
type (Supplementary Fig. S11A; representative examples). The 
DLBCL matrisome genes were then ranked from the highest 
probability of expression in fibroblasts versus macrophages 
to obtain their respective contributions to the ECM (Fig. 7D; 
Supplementary Fig. S11B). Collagens and the proteoglycans 
decorin (DCN) and biglycan (BGN) were among the strongly 
associated with the CAFs (Fig.  7D). Conversely, the ECM 
protein abundance of these collagens and proteoglycans sig-
nificantly correlated with the estimation of CAFs by FGES  
(R = 0.88, P = 0.001, n = 9 patients) and fibroblast proportion 
by signature deconvolution (R = 0.9, P < 0.001, n = 9 patients; 
Supplementary Fig. S11C). Accordingly, CAF-associated pro-
teins were enriched in the portion of the DLBCL matrisome 
that correlated with a lower TAM/CAF ratio in 14 patients 
(Fig. 7E). Last, and similar to CAF FGES, the expression of the 
CAF’s ECM proteoglycans DCN and BGN was associated 
with favorable prognosis, particularly with DLBCL LME-DP 
patients (Fig. 7F and G).

By a combination of short- and long-range effects (43), 
microenvironmental proteoglycans have the potential 
to influence tumor growth. To determine their effects in 
DLBCL, we first developed two PDTX models from patients 
with DP-LME ABC-DLBCL that conserved these charac-
teristics in the mouse (Fig.  7H; Supplementary Fig.  S11D). 
Once the PDXs were fully established, we injected the mice 

Figure 5.  Pharmacologically reversible epigenetic mechanisms of microenvironmental evasion. A, Proportion of malignant cells and proliferative 
activity of DLBCL with DP-LME. B, Tumor clonality (fraction of dominant clone by IGH). C, Proportion in MHC class I and II double negative by IHC analysis 
of 177 DLBCL comparing DP-LME versus other LMEs. D, Genome-wide aberrant DNA hypermethylation CIMP score and specific SMAD1 gene promoter 
methylation in DP-LME versus other LMEs. E, Correlation plot between CIMP score and TGF pathway activity in DLBCL according to their respective 
LMEs. F, SMAD1 GE and TGF pathway activity in the full cohort of DLBCL. G, Characterization of the LME in the syngeneic murine B-cell lymphoma model 
A20 by the LME similarity score. LME human DLBCLs with the highest 20% of similarity score (n = 232) to A20 LME showed enrichment of immune-
deserted LMEs (96%) with higher proportion of DP-LMEs (78%). H, Schedule of azacytidine (AZA) administration in A20 mice and tissue analysis (top). 
Selection of pathways from differentially hypomethylated and overexpressed genes from the A20 mice treated with azacytidine (bottom). The color bar 
indicates the percentage of genes associated with a pathway, and the size of the circles indicates the number of genes in a pathway. I, Smad1 expres-
sion, TGF pathway activity, MHC class I and II expression, and proportion of deconvoluted CD4+ T cells in the A20 lymphomas treated with azacytidine. ssGSEA, 
single sample gene set enrichment analysis. J, Representative pictures of CD3 immunostaining of A20 lymphomas treated with azacitidine. Scale bar,  
100 µm. **, P < 0.01; ***, P < 0.001.
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Figure 6.  Changes in LME cellular composition during lymphoma progression. A, LME cellular heterogeneity measured as Shannon entropy (SE) as a 
function of lymphoma progression. Early and late time points include: matched ABC-DLBCL primary and relapsed case, three genetically engineered mouse 
models comparing premalignant lymph node niches and lymphoma niches, A20 syngeneic B-cell lymphoma model at days 5 and 9 after implantation and 
five paired indolent FL phase and at the moment of transformation. The SE metric is shown inside every donut plot, and the tendency over time is shown at 
the bottom for each pair. The proportion of cell populations including B cells is represented in the donut plot. B, Pseudotime analysis of LME progression in 
ABC and GCB-DLBCLs. C, LME Shannon entropy analysis imposed on the LME pseudotime analysis. D, LME of FL, tFL, and de novo GCB-DLBCLs imposed 
on the LME pseudotime of GCB-DLBCLs (left). Paired FL–tFL samples (n = 5) shown on the LME pseudotime of GCB-DLBCLs (right). E, Analysis of propor-
tion of tumor-infiltrating T cells imposed on the pseudotime analysis of BC and GCB-DLBCLs. Density of T cells is shown as color scale.
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intraperitoneally with vehicle, DCN, or BGN and followed 
the tumor growth curve. We found that both proteogly-
cans significantly delayed the progression of the tumor 
versus vehicle (P = 0.009 and P = 0.039 for BGN and DCN, 
respectively, in PDTX1 and P = 0.0004 and P = 0.01 for 
BGN and DCN, respectively, in PDTX2, Fig. 7I; Supplemen-
tary Fig.  S11E). Proteoglycans did not show a statistically 
significant antiproliferative effect in isolated PDX-derived 
lymphoma cells. Although there was no evidence of direct 
incorporation of the administered proteoglycans into the 
PDTX ECM, BGN administration resulted, as previously 
described (44), in a 20% increase in DCN content (P = 0.032, 
vs. vehicle) in the PDTX2 ECM. Overall, this suggests that 

the antiproliferative effect of these proteoglycans results 
from both short- and long-range interactions.

DISCUSSION
We characterized the microenvironment of DLBCL by 

analyzing a large collection of gene-expression profiles and 
technical innovations, including development of microenvi-
ronment-derived FGES, analysis of the ECM composition by 
proteomics, and establishment of PDTX models. Similar to cell 
deconvolution algorithms, our methodology reflects the cel-
lular composition of the microenvironment but also provides 
valuable information on its functionality. This methodology  
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allowed us to describe four basic categories of DLBCL LME 
with distinct clinical and biological connotations. In addi-
tion, by overlaying mutations and epigenetic alterations in 
lymphoma cells with the temporal ordering of LME changes, 
we were able to infer potential mechanisms of cancer cell–
LME coevolution. Lastly, we identified novel potential thera-
peutic targets present in the LME, including ECM proteins 
exemplified by the proteoglycans DCN and BGN.

Our study represents a comprehensive analysis of the 
LME in DLBCL that simultaneously integrates characteris-
tics of microenvironmental and malignant cell populations 
into the prognosis of the disease. Pioneering transcrip-
tomic studies that examined host factors and the stroma 
in DLBCL identified the microenvironment as a relevant 
component of disease biology (10, 15, 45). These initial 
studies relied on identifying differences in gene-expression 
profiles of tumor samples (10, 15, 45). Our study refined 
this analysis by extracting microenvironmental signatures 
from the confounding transcriptome background of the 
usually most abundant lymphoma cells, which enabled the 
identification and quantification of microenvironmental 
cells within the bulk tissue transcriptome (46). We further 
optimized this technique to include functional signatures 
that include the activity of certain cell types such as T cell 
and NK cell cytotoxicity as well as pathways not uniquely 
associated with a cell type such as ECM remodeling and 
cytokine secretion. The association of these functional 
signatures suggested the presence of functional cellular 
ecosystems within the LME and offered a comprehensive 
understanding of the role of the microenvironment in 
this disease. This approach provided more biologically 
relevant evidence than that obtained from the quantifica-
tion of individual cell populations. Remarkably, the LME 
mirroring the GC microenvironment confers a better prog-
nosis than the LME depleted of microenvironmental cells, 
suggesting that, analogous to the molecular checkpoints 
operating in centroblasts (47, 48), the microenvironment 
may provide primordial mechanisms to avoid lymphoma-
genesis. In turn, lymphoma cells develop and/or select 
genetic and epigenetic traits that contribute to the evasion 
of immune microenvironmental constraints (19). Our data 
suggest that for initially immune-rich DLBCLs, disease pro-
gression tends to associate with an immune-deserted LME. 
More broadly, this notion suggests that the coevolution of 
lymphoma cells and LME cells (likely also involving non-
immune LME cells) progresses toward a state with lower 
heterogeneity in these two compartments, a concept that 
remains to be experimentally validated as more LME cell 
subpopulations are described.

In addition to the restriction imposed by the immune cells 
to lymphoma development (49), our work suggests that the 
ECM also has a critical role. The ECM is a network of physi-
cally and biochemically distinct macromolecules, comprised 
of mostly fibrillar proteins, proteoglycans, and glycoproteins, 
that are central to the structural integrity of tissues and the 
behavioral regulation of malignant and microenvironmen-
tal cells. We described that LMEs presenting with a higher 
proportion of ECM components derived from CAFs (i.e., 
a CAF matreotype) rather than from TAMs have a favora-
ble prognosis. Some ECM-derived proteins, particularly the 

small leucine rich proteoglycans (50) BGN and/or DCN, 
exert short- and long-range effects that ultimately affect 
lymphoma cell proliferation, as demonstrated in our PDTX 
experiments. Because the PDTXs were developed in immu-
nocompromised mice, the mechanism appears independent 
of the establishment of an adaptive lymphoma immune 
response. Along these lines, previous work in DLBCL has 
established that CAFs were associated with a possible better 
outcome (51). In addition, through the secretion into the 
interstitial matrix of soluble factors such as TGFB ligands 
(52), fibroblasts may contribute to curtailing lymphoma cell 
progression. A mechanism that can be overcome in DLBCL 
cells by the epigenetic repression of TGFB transducers such 
as SMAD1 (23, 24). The antilymphoma role of CAFs, and of 
TGFB, in DLBCL is in contrast with their protumorigenic 
role described for the majority of solid tumors (52, 53), 
underlining the need to study the microenvironment in a 
tumor-specific manner.

In cohort analysis, HGBL-DH patients harboring trans-
locations of MYC and BCL2 as well as DLBCL express-
ing high-molecular-grade transcriptional signatures have 
unfavorable prognosis after first-line therapy, which often 
justifies the implementation of intensive chemotherapy reg-
imens (16, 54). However, at the individual level, long-term 
responders to standard chemoimmunotherapy do exist, 
suggesting the presence of a subgroup of less aggressive 
lymphomas. Although this phenomenon could be explained 
by the presence of additional genomic and epigenomic 
alterations (16), our data indicate that distinct biological 
behavior associates with unique LME categories. HGBL-
DH and other MHG DLBCLs exhibit a significantly better 
outcome within GC-like and MS LMEs than within IN and 
DP-LMEs. In light of the chemoresistance associated with 
this lymphoma subtype, new approaches are considering 
the addition of targeted therapies such as BCL2 inhibitors 
(54). The results of our studies suggest that, in clinical trials, 
targeted agents should be considered not only in the context 
of particular genetic subtypes but also in consideration of 
LME categories.

In summary, we defined the LME into four major transcrip-
tionally defined categories with distinct biological properties 
and clinical behavior, which complements gene-expression 
subgroups and genetic subtypes of DLBCL in guiding the 
development of rational therapeutic approaches for these 
patients.

METHODS
Human Subjects

All patients providing samples gave written informed consent. 
Molecular and clinical data acquisition and analysis and PDTX estab-
lishment were approved and carried out in accordance with Declara-
tion of Helsinki and were approved by Institutional Review Boards of 
the New York Presbyterian Hospital, Weill Cornell Medicine (WCM), 
New York, NY, and Ospedale San Giovanni Battista delle Molinette, 
Turin, Italy.

Clinical Characteristics
All the patients with DLBCL in the WCM cohort were treated with 

R-CHOP. Response categories were defined as complete response 
when patients remained free of disease at five years, nonresponders 
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refractory when complete response was never achieved, and nonre-
sponders relapsed when they remained free of disease for less than 
two years. All the biopsies for molecular analysis were taken before 
any treatment at the moment of diagnosis. From the publicly avail-
able cohorts, we considered for outcome analysis all gene-expression 
DLBCL data sets with annotated clinical and outcome data, includ-
ing response by RECIL criteria (55), PFS, and/or OS of patients 
treated with rituximab-containing chemoimmunotherapy regimens. 
We excluded data sets in which the OS and/or PFS Kaplan–Meier 
curves were not representative of unselected patients with DLBCL 
treated with standard-of-care chemoimmunotherapy and/or data 
sets with fewer than 30 samples. Survival analysis was conducted 
using the Lifelines Python package.

RNA-seq
RNA was extracted from fresh-frozen DLBCL samples main-

tained in TRIzol (Invitrogen), and libraries (PE 50 or 100 bp) were 
prepared using the TruSeq RNA sample kit and validated using 
the Agilent Technologies 2100 Bioanalyzer. Library preparation, 
sequencing, and post-processing of the raw data were conducted 
at the WCM Epigenomics Core Facility on Illumina HiSeq2500. 
This data set (WCM cohort) was combined for normalization and 
aggregated into training and validation cohorts as described in the 
specific analysis.

Compilation of a Transcriptomic LME Data Set
Publicly available DLBCL gene-expression (GE) data sets and our 

own data set were compiled into a unique data set (LME data set) 
comprising a total of 4,655 samples (Supplementary Fig. S2A). Only 
cohorts with 30 or more lymphoma samples were included. Because 
our goal was to obtain information on the tumor microenviron-
ment, GE data obtained from selected or isolated lymphoma cells 
were excluded from this analysis. For comparison, GE cohorts con-
taining HGBL, FL, BL, and primary mediastinal B-cell lymphoma 
samples were also considered. Clinical annotation, pathologic infor-
mation, and molecular data were curated and harmonized among 
all included data sets. Only patients with DLBCL and HGBL treated 
with rituximab-containing regiments were considered for response 
and outcome comparisons. Our WCM cohort included a balanced 
number of R-CHOP responsive and nonresponsive patients. 

RNA-seq Data Processing. New and deposited RNA-seq reads 
were processed using a unified pipeline (56). Reads were aligned 
using Kallisto v0.42.4 to GENCODE v23 transcripts 69 with 
default parameters. Protein coding, IGH/K/L- and TCR-related 
transcripts were retained, whereas noncoding, histone- and mito-
chondrial-related transcripts were removed, resulting in 20,062 
analyzed transcripts. Gene expression was quantified as tran-
scripts per million and log2 transformed. Almost all RNA-seq 
cohorts were sequenced using poly-A enrichment and were com-
bined into a single LME data set. 

GE Microarray Data Processing. Raw and processed data were 
downloaded from the Gene Expression Omnibus (GEO). When pos-
sible, expression was reprocessed from raw files. All Affymetrix data 
sets with available CEL files were renormalized using the gcRMA 
package with default parameters. Illumina array probes were con-
verted into genes using one probe with the highest mean values in the 
cohort per gene. Data sets with more than one platform were split by 
platforms. Samples with low Pearson correlation with other samples 
in the space of all genes (< 0.8 for Affymetrix platforms and < 0.7 for 
Illumina platforms) for each cohort were excluded as well as outliers 
according to the principal component analysis (PCA) projection. 
Microarray GE data sets were combined into the LME data set if they 
were obtained in the same institution, on the same platform, had 
no significant batch effects on PCA projection in the LME signature 
space, and had no significant differences in outcomes.

Purified Cell Type Compendium Collection
We collected 5,069 RNA-seq gene-expression data sets from purified 

cell populations including normal and lymphoma cells (DLBCL, FL, 
and BL) from public data sources (NCBI GEO, ref. 57; SRA, ref. 58; 
ENA, Array Express, Protein Atlas, ref. 59; BluePrint, and ImmPort) 
to create a cell gene-expression compendium. We included data sets 
using the following criteria: isolated from human tissue, poly-A or 
total RNA-seq performed with read length higher than 31 bp, having 
at least 4M of coding read counts, passed quality control by FASTQC, 
and no contamination with other cell types was detected (<2%).

Development of LME GE Signatures
We developed FGES of tumor microenvironmental cells, cellular 

states, physiologic and pathologic processes, and signaling pathways 
using a combination of GE signatures and literature curation. FGES for 
cell types were obtained from purified GE cell population signatures 
manually curated to include only those genes that are exclusively 
expressed in the defined cell type or specifically associated with 
particular biological processes using data from more than 500 pub-
lications. The association of GE profiles from 5,009 cell populations 
with the curated signatures was determined by tSNE projections and 
Mann–Whitney tests. Signature scores were calculated using in-house 
python implementation of the single sample gene set enrichment 
analysis (ssGSEA; ref. 60). Some cellular FGES were also validated using 
publicly available single-cell RNA-seq data (61). The activity scores 
of biological pathways were calculated using PROGENy (Pathway 
RespOnsive GENes; ref. 62). As a result, 25 FGES (including three sig-
naling pathways) were developed (Supplementary Table S1). 

LME Clustering. FGES signatures were used to identify microen-
vironmental patterns among DLBCL GE samples by unsupervised 
dense clustering using the Louvain method for community detection 
(63). FGES intensities were median-transformed within each cohort. 
Non-DLBCL samples were also transformed using DLBCL samples’ 
median and MAD values. Intersample similarity was calculated using 

Figure 7.  The DLBCL ECM produced by CAFs and TAMs influences lymphoma biology. A, Risk of death for the ratio of TAM/CAF in the LME of DLBCLs 
for the full cohort, COO subtypes, and LME categories. B, Graphical representation of the DLBCL matrisome experiments. C, Matrisome heat map of 18 
DLBCL samples (x-axis) and 131 proteins (y-axis) by unsupervised hierarchical clustering. Donut plots show the breakdown of the ECM proteins category 
for each of the three matreotype clusters termed Fm1, Fm2, and Mm. For the 14 samples with available RNA-seq, the TAM/CAF ratio, LME category, and 
the COO subtype are shown. D, Top-10 and bottom-10 transcripts of matrisome proteins according to their relative abundance in fibroblasts and mac-
rophages. E, Pearson correlation matrix of TAM/CAF ratio and the 131 matrisome proteins. Proteins associated with fibroblasts and macrophages (from 
D) are depicted with distinct color bars, and decorin (DCN) and biglycan (BGN) are shown. F and G, Kaplan–Meier model of OS according to BGN 
(F) and DCN (G) abundance for DLBCL LME-DP patients. H, Cellular composition by transcript deconvolution of primary DLBCL LME-DP and its PDTX 
model. Expansion of the LME cellular composition in the primary and PDTX model and indication whether these cells in PDTX are of human or mouse 
origin. I, DLBCL growth curve (left) and area under the curve (AUC) of tumor volume (right) of a DLBCL LME-DP PDTX treated with vehicle versus DCN 
(top) or vehicle versus BGN (bottom).
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Pearson correlation. The resulting distance matrix was converted into 
a graph where each sample formed a node and two nodes formed 
an edge with weight equal to the pair’s Pearson correlation. Edges 
with weight lower than specified thresholds were removed and the 
Louvain community detection algorithm was applied to calculate 
graph partitioning into clusters. To mathematically determine the 
optimum threshold for observed clusters, we used minimum David 
Bolduin, maximum Calinski Harabasz and Silhouette scores exclud-
ing separations with low-populated clusters (<5% of samples).

Development of a COO Classifier
Training samples (n = 1,968) were obtained from the data 

sets GSE117556, Leipzig Lymphoma (64), GSE31312, GSE10846, 
GSE87371, GSE11318, GSE32918, GSE23501, LLMPP, and 
GSE93984. For each data set, we selected samples having COO 
labeling followed by another round of random selection to obtain 
a balanced COO ABC:GCB ratio of 40:60 per data set. Valida-
tion samples (n = 928) with COO labeling were selected from 
the data sets GSE34171 (GPL96 + GPL97), BCA (DCL1 + DCL2; 
ref. 19), GSE22898, GSE64555, WCM (GSE145043), GSE19246, 
and the NCICCR data sets. A final data set of samples originally 
considered COO unknown or unclassified (n = 1,169) was aggre-
gated from COO-unlabeled samples included in the previous data 
sets plus the GSE69051, GSE69049, E-TABM-346, GSE68895, 
GSE38202, GSE12195, ICGC_MALY_DE, and NCICGCI data sets. 
To eliminate platform and data set batch effects without intro-
ducing scaling batch effects, we applied rank transformation to 
each sample independently as follows: Expression Geneset A = 
[x1,x2,x3…xN-1, xN] sorted ascending [x2, x15,xN-1…x1, xN] [1, 
2, 3 … N-1, N]. Missing genes were omitted in the rank trans-
formation, and genes with equal values were assigned with the 
average rank. To perform binary classification, we used a gradient 
boosting decision tree classifier in LightGBM. To perform feature 
selection, we estimated the feature importance to the model using 
Shap package (https://github.com/slundberg/shap). To develop 
a classifier, the initial gene set was curated from ref. 65. We con-
ducted recursive feature elimination until 32 features were left, 
and a set of genes with the best cross-validation was chosen (Sup-
plementary Table S2).

Development of DHIT-Signature Classifier
The initial gene set of 104 genes was curated from ref. 16. The 

same procedure applied to the COO classifier was performed with 
slight modifications. The BCA (DLC1 + DLC2) cohort (n = 157 
GCB-DLBCL samples) was split into training and validation samples. 
Due to class disbalance, we applied a weighted f1-score during all 
procedures. Feature selection resulted in 20 genes (Supplementary 
Table S3). The classifier was applied to all the GCB-DLBCL samples 
from the final data set. For comparison, the original DHITsig score 
was calculated in each data set using coefficients from the original 
publication (16) followed by median transformation of the score for 
each data set and combined.

Other GE Signatures
The CYT score for cytolytic activity was calculated as previously 

described (27). Values were then clipped using 5% lower and upper 
quantiles, projected to [0, 1] and combined. The stromal-1 and 
stromal-2 signatures were calculated using ssGSEA and then median-
transformed within each cohort.

LME Heterogeneity and Pseudotime Analysis
Shannon diversity indexes were calculated from the LME cell 

deconvolution profiles. To calculate the LME heterogeneity index for 
each tumor, we performed cell deconvolution on the bulk RNA-seq 

samples from tumor tissue. From this prediction, we calculated the 
estimated proportion (p) of cells that belong to each distinct cell 
type. The subpopulation diversity index was then calculated as Shan-
non Index: DI = −Σi(pi × lnpi), with larger values representing higher 
LME heterogeneity within the lymphoma. The monocle 2.0 R pack-
age (66) was implemented for dimensionality reduction and the con-
struction of pseudotime. All samples were assigned COO subgroups 
and LME categories. Dimension reduction was run with DDRTree 
method (67), and the pseudotime was set with GC-like LME as zero 
point. This analysis was performed thrice with same hyperparameters 
for samples classified as ABC-DLBCL (n = 2,128) and GCB-DLBCL  
(n = 2,867). Then, the projection was used to display Shannon 
entropy and tumor-infiltrating T cells. Paired FL-tFL RNA-seq sam-
ples (n = 6) were obtained from GSE142334 and only samples with 
matched HLA within pairs were included.

Deconvolution of Cell Percentages from Bulk  
DLBCL Transcriptomes

A recently described algorithm was used for cell deconvolution 
(22). Briefly, the sorted cell population compendium was used to 
develop a machine learning–based cell deconvolution algorithm 
to calculate the percentage of different cell types from bulk RNA-
seq mixtures based on the minor difference between cell sub-
populations. We used a two-stage hierarchical learning procedure 
for gradient boosting a LightGBM model that included training 
on artificial RNA-seq mixtures of different cell types including 
immune and stromal cell populations. Artificial RNA-seq mix-
tures were created by admixing different data sets of sorted cells 
together in various cell proportions, and the LightGBM model was 
trained to predict the admixed cell percentage. Then, the model 
was used to reconstruct proportions of cell subpopulations using 
the information from the proportion of the major cell populations 
and subpopulations. The algorithm estimates the RNA proportion 
of a cell type in bulk RNA-seq mix of a sample, which could be 
converted into cell percentage if the RNA concentration of a cell 
type was known (68). Total RNA abundance in isolated cells was 
quantified using Qubic.

Cytometry by Time of Flight and IHC Analysis
Inflamed tonsils were procured from the WCM–New York Presbyte-

rian Hospital as pathology discards. Tonsils were mechanically disso-
ciated and incubated in a digestion buffer (25 mg/mL collagenase A, 
25 mg/mL dispase II, 250 mg/mL DNAse in a solution of 140 nmol/L 
NaCl, 5 mmol/L KCl, 2.5 mmol/L phosphate buffer saline pH 7.4, 10 
mmol/L HEPES, 2 mmol/L CaCl2, and 1.3 mmol/L MgCl2) until a sin-
gle-cell suspension was obtained. Homogenous fresh cell suspensions 
were divided for RNA-seq and Cytometry by Time of Flight (CyTOF) 
analyses. Briefly, cells for CyTOF analysis were barcoded and pooled 
for incubation with FcR blocking reagent (Miltenyi Biotec), stained 
with 300 µL of the antibody panel per 107 cells, and resuspended in 
nucleic acid Ir-intercalator (Fluidigm). Samples were analyzed at the 
Mass Cytometry Core of WCM. Data were processed and analyzed as 
previously described (69). Clustering analysis was performed using the 
Python implementation of PhenoGraph run on all samples simulta-
neously and then manually curated into cell populations. CAFs and 
TAMs were identified by IHC using anti-SMA and anti-CD68 antibod-
ies, respectively, and quantified using QuPath (70).

Genetic Alterations Analysis
WES and WGS next-generation sequencing quality control analy-

sis was performed using FastQC v0.11.5, FastQ Screen v0.11.1, and 
MultiQC v1.6. Sample correspondence was checked using HLA 
comparison and the Conpair algorithm (71). For WES, low-quality 
reads were filtered using FilterByTile/BBMap v37.90 and aligned to 
human reference genome GRCh38 (GRCh38.d1.vd1 assembly) using 
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BWA v0.7.17. Duplicate reads were removed using Mark Duplicates 
v2.6.0, indels were realigned by IndelRealigner and recalibrated by 
BaseRecalibrator (both of GATK v3.8.1). 

Variant Calling. Germline and somatic single-nucleotide varia-
tions, small insertions, and deletions were detected using Strelka v2.9 
and annotated using Variant Effect Predictor v92.1. CNA were evalu-
ated by customized version of Sequenza v2.1.2. Translocations from 
WGS samples were called using DELLY (v0.8.1; ref. 72) and annotated 
with AnnotSV (v2.2; ref. 73). 

Public Genomic Data. Whole-genome mutations were available 
for NCICCR, WCM, and GSE98588/phs000573 cohorts. Targeted 
mutations were available for the GSE117556 (70 genes), GSE22898 
(322 genes), BCA/DLC2 (144 genes), and GSE87371 (34 genes) 
cohorts. Whole-genome CNA calls were available for NCICCR, WCM, 
GSE34171_1, and GSE98588 cohorts. 

Association of LME with Specific Genetic Alterations. NCICCR, BCA 
and WCM cohorts were used to analyze disbalances in the proportion 
of mutations in relation to LME categories. NCICCR, WCM, and 
GSE87371 cohorts were used to analyze disbalances in the propor-
tion of CNAs in relation to LME categories. Ploidy was accessed 
using weighted mean and reported as decimal number. The gene-
level CNAs were obtained intersecting segments with hg19 gene 
coordinates using BEDTools (74). Gene CNAs were analyzed relative 
to ploidy levels. Additionally, we curated mutations and CNAs for 
selected genes including MYD88, CD79B, EZH2, CREBBP, EP300, 
KMT2-D, TP53, B2M, CIITA, GNA13, CCND3, GNAI2, P2RY8, CD70, 
and CDKN2A, across all data sets and platforms.

Tumor Clonality
To process immunome data from RNA sequences into quanti-

tated clonotypes, we applied MiXCR v2.1.7 (75). Single clonotypes 
were grouped into clones with unique VDJ combination and identi-
cal CDR3 nucleotide sequences. For B cells, the clones were further 
aggregated into clone groups if the VDJ combination was the same 
and CDR3 nucleotide sequences differed no more than 1 nucleotide. 
The biggest clone group was assigned as tumor if the absolute clo-
notype counts > 20; the relative clonotype counts > 5%; the ratio of 
the second biggest group to the first < 0.6 and the group contains 
an enriched clone > 25%. The tumor light chain was called if there 
was an enriched clonotype in one of the light chains. In cases with 
an enriched clone in both chains, the biggest by absolute counts 
was selected.

DNA Methylation Analysis
Library preparation, sequencing, and post-processing of the raw 

data were performed at the WCM Epigenomics Core Facility fol-
lowing the enhanced reduced representation bisulfite sequencing 
method (eRRBS; ref. 76). Briefly, DNA was digested and then 
ligated with 5-methylcytosine-containing indexed Illumina adapt-
ers. Adaptor-ligated DNA fragments were size selected and bisulfite 
converted using the EZ DNA Methylation Kit (Zymo Research). 
Amplification was performed on size-selected DNA fractions (150–
250 bp and 250–400 bp), and purification steps were done using 
Agencourt AMPure XP (Beckman Coulter) beads. Libraries were 
sequenced on Illumina HiSeq2500. Bisulfite reads were aligned to 
the bisulfite-converted hg19 reference genome using Bismark (77). 
In addition to the WCM cohort (GSE145043), two publicly avail-
able data sets were used in this analysis (TCGA and GSE23967). To 
estimate CIMP values, we selected probes located in CpG islands 
in gene promoters (i.e., regions TSS200, TSS1500, 5′UTR, and 
first exon) excluding the genes located in chromosomes X and 
Y. For CIMP scores, we selected unmethylated probes (i.e., 95th 

percentile < 0.2) from 60 normal immune cell subtypes from data 
set GSE35069. Probes that were methylated (beta-value > 30%) in 
less than one third of tumor samples were also excluded, yielding 
8,137 informative probes that were used to compute CIMP scores 
as their mean methylation values for samples included in the data 
sets TCGA and WCM. The data sets GSE23501 (gene expression) 
and GSE23967 (HELP methylation assay) were used to validate 
SMAD1 promoter methylation on one available probe and TGFB 
pathway activity.

Mouse Experiments
All the experiments were conducted under approval of the WCM 

Institutional Animal Care and Use Committee at the Research Ani-
mal Resource Center. PDTX were established in female and male 
NSG B2M mice (NOD.Cg-B2mtm1Unc Prkdcscid Il2rgtm1Wjl/SzJ) and then 
serially propagated into NSG mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/
SzJ; The Jackson Laboratory). PDTX were analyzed by RNA-seq to 
determine whether molecular features from the original lymphoma 
were maintained in the xenografted tissue. As part of the PDTX char-
acterization, PDTX implanted in NSG mice were treated with CHOP 
chemotherapy to determine whether the original patient response 
was reproduced in the mice. Clonal correspondence was proved via 
BCR rearrangement analyses. Molecular and therapeutically charac-
terized PDTX were subsequently implanted in NSG mice to assess 
the antitumor effect of proteoglycans. Once tumors reached a palpa-
ble size, mice were randomized to receive vehicle (PBS), decorin (R&D 
Biosystems) 0.4 mg/kg intraperitoneally, or biglycan (R&D Biosys-
tems) 0.4 mg/kg intraperitoneally according to the schedule shown 
in the figures. Mice were treated daily in a weekend-off schedule, and 
tumor sizes were recorded every other day. Body weight was used as 
a surrogate for drug toxicity. PDTX establishment, characterization, 
and treatment were conducted at the WCM, Mayer Cancer Center, 
PDTX Core Facility.

Murine Lymphoma Model. Mouse B-cell lymphoma A20 cells 
were subcutaneously implanted in the inguinal lymph node pad 
into female and male BALB/c mice (at least 8-week-old), and once 
tumors were fully established and palpable, mice were randomized to 
receive either vehicle (saline solution) or azacitidine 12.5 mg/kg/day 
by subcutaneous injection for four consecutive days. Authenticated 
A20 cells were purchased from the ATCC repository (TIB-208). We 
routinely conducted analysis of Mycoplasm sp. in cellular cultures by 
PCR. At the end of the treatment, mice were sacrificed and tumors 
extracted for analysis.

Transcription and DNA Methylation Analysis of Tumors. RNA 
was isolated according to the kit manufacturer’s instructions (Zymo 
Quick-RNA Miniprep) from cryopreserved A20 tumors and from 
biobanked cryopreserved whole tissues (spleen and tumors) for 
genetically engineered lymphoma mouse models. The Illumina 
TruSeq Stranded poly-A Library Prep Kit was used for cDNA prepa-
ration. Sequencing was performed using an Illumina NovaSeq 6000 
SP Flowcell at WCM Genomics Resources Core Facility. Transcripts 
were quantified against Gencode mm38 genome using Salmon (78). 
Transcript abundances were summarized with tximport in R version 
3.6.2. DESeq2 (79) was used for differential expression analyses. 
DNA was isolated according to the kit manufacturer’s instructions 
(Zymo Quick-DNA Miniprep). Library preparation, sequencing, and 
post-processing of the raw data were performed at the WCM Epig-
enomics Core Facility following the eRRBS method. Libraries were 
sequenced on Illumina NovaSeq 6000 SP Flowcell. Bisulfite reads 
were aligned to the bisulfite-converted mm10 reference genome 
using Bismark (77) and differential methylation was assessed using 
MethylKit (80). Briefly, promoter regions were defined as 2.5 kb 
upstream and 0.5 kb downstream of the transcription start site, 
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and differential methylation was calculated on those regions, with 
a minimum number of covered bases of 3. Tumor tissues were pro-
cessed for paraffin embedding and CD3 IHC analysis at the WCM 
Comparative Pathology Core Facility. CD3-stained cells were quanti-
fied using ImageJ software.

Analysis of Murine LME Signatures
We used Kallisto v.0.42.4 (81) to align RNA-sequencing reads to 

the transcriptome reference GRCm38.p6. Transcript annotation 
(protein coding and noncoding), transcript to gene mapping, and 
annotation to human homologs for murine genes were retrieved 
from the Ensembl database (release 96; ref. 82). Only protein-coding 
genes with human homologs were used in subsequent analysis. 
To measure the similarity between the human lymphoma sample 
microenvironment and a particular murine lymphoma phenotype, 
we developed the microenvironment similarity (MES) metric, which 
is a reversed Euclidean distance between estimated percentages of 
different cell types in murine and human samples as follows: MES 
(P, s) = 1i(phumani − pmousei)2, where P is a murine lymphoma phe-
notype, s is a human lymphoma sample, phumani is the estimated 
cell percentage of cell type i in the sample s, pmousei is the median 
estimated cell percentage of cell type i among murine samples with 
phenotype P.

Proteomics and Matrisome Analysis
Lymphoma tissues were processed based on a modified decellulari-

zation protocol (83) using 3% peracetic acid and incubated in a 1% Tri-
ton X-100, 2 mmol/L EDTA solution for 27 hours. Then, tissues were 
successively incubated in distilled water for 24 hours followed by 600 
U/mL DNAse in PBS for 24 hours and followed by distilled water for 
72 hours. Tissue fragments were then dried using a vacuum filtration 
system and digested and prepared for tandem mass tag (TMT) mass 
spectrometry analysis using a modify protocol (84). Briefly, samples 
were resuspended in 8 M urea and subjected to reduction with DTT 
and alkylation with iodoacetamide. After that, samples were diluted 
to 2 M urea with 25 mmol/L ammonium bicarbonate and incubated 
with PNGase F for 2 hours at 37°C. Lys-C were added for 2-hour incu-
bation at 37°C after deglycosylation. Trypsin was added for overnight 
digestion at 37°C. The resulting peptides were desalted by C18 Stage-
tips. Lyophilized peptides were then labeled with the TMT reagents 
(Thermo Fisher Scientific) according to the manufacturer’s protocol. 
Labeled peptides were mixed, lyophilized, and desalted prior to LC/
MS analysis. An EASY-nLC 1200 coupled on-line to a Fusion Lumos 
mass spectrometer was used (Thermo Fisher Scientific). Buffer A (0.1% 
formic acid in water) and buffer B (0.1% formic acid in 80% acetoni-
trile) were used as mobile phases for gradient separation. A 75-µm 
I.D. column (ReproSil-Pur C18-AQ, 3 µm, Dr. Maisch GmbH) was 
packed in-house for peptide separation. Peptides were separated with 
a gradient of 5%–10% buffer B over 1 minute, 10%–42% buffer B over 
231 minutes, and 42%–100% B over 5 minutes at a flow rate of 300 nL/
minute. Full MS scans were acquired in the Orbitrap mass analyzer 
over a range of 400–1,500 m/z with resolution 60,000 at m/z 200. Top 
15 most abundant precursors were selected with an isolation window 
of 0.7 Thomson and fragmented by higher-energy collisional dis-
sociation with normalized collision energy of 40. MS-MS scans were 
acquired in the Orbitrap mass analyzer. For protein identification, raw 
files were processed using the MaxQuant computational proteomics 
platform version 1.5.5.1 (Max Planck Institute) and the fragmentation 
spectra were used to search the UniProt human protein database. Oxi-
dation of methionine and protein N-terminal acetylation were used 
as variable modifications for database searching. Both peptide and 
protein identifications were filtered at 1% false discovery rate based 
on decoy search using a database with the protein sequences reversed. 
To identify the abundance of ECM proteins, we used the matrisome  

database to find the overlapping proteins between the ones identi-
fied from the tissues and the ones present in the database of identi-
fied human ECM proteins (http://matrisomeproject.mit.edu). As a 
control to normalize between subsequent mass spectrometry runs, 
we used decellularized human tonsils from one individual and com-
puted the ratios of the abundance of proteins found in the DLBCL 
tissues to the abundance found in the tonsils. Experiments were con-
ducted at the WCM Metabolomics and Proteomics Core Facility. For 
samples with matched matrisome-transcriptome data, the RNA was 
extracted using a Qiagen RNeasy Kit following the manufacturer’s 
instructions. The sequencing was performed using an exome capture 
protocol, and libraries were constructed using Illumina RNA-Prep 
with enrichment (tagmentation kit with dual indexes) according 
to the manufacturer’s protocol and sequenced on Novaseq 6000 SP 
Flowcell.

Data Sharing
WCM transcriptomics and DNA methylation samples (n = 184) 

and PDTX transcriptomics (n = 18) are deposited in the Gene Expres-
sion Omnibus (GSE145043).
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