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Fractional re-distribution among cell motility states
during ageing
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Ageing in humans is associated with the decreased capacity to regulate cell physiology.

Cellular properties, such as cell morphology and mechanics, encode ageing information, and

can therefore be used as robust biomarkers of ageing. Using a panel of dermal fibroblasts

derived from healthy donors spanning a wide age range, we observe an age-associated

decrease in cell motility. By taking advantage of the single-cell nature of our motility data, we

classified cells based on spatial and activity patterns to define age-dependent motility states.

We show that the age-dependent decrease in cell motility is not due to the reduced motility

of all cells, but results from the fractional re-distribution among motility states. These findings

highlight an important feature of ageing cells characterized by a reduction of cellular het-

erogeneity in older adults relative to post-adolescent/adults. Furthermore, these results point

to a mechanistic framework of ageing, with potential applications in deciphering emergent

ageing phenotypes and biomarker development.
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Ageing can be defined as the accumulation of dysfunctions
with the passage of time that limits the ability of organ-
isms, organs, and tissues to absorb and rebound after

perturbations and stressors1–3. In humans, normal ageing is
associated with diverse physiological changes that influence the
magnitude, and rates of progressive decline among individuals.
These include the decreased abundance and activity of circulating
cytotoxic immune cells, slower gait speed, and declines in car-
diorespiratory fitness4–8. Furthermore, the high variability among
individuals suggests that there is no uniform ageing phenotype. A
growing body of evidence shows that the interactions of intrinsic
and extrinsic factors such as molecular states9–12 (e.g., epige-
nomic) together with environmental factors and macroscopic
stressors13–15 (e.g., social determinants and disparities) contribute
to the rates of ageing in individuals16. However, it remains
unclear how the underlying molecular states of an individual
relate to their clinical outlook at the organ/tissue level in the
context of ageing. We postulate that studying age-associated
changes at the intermediate length scale of cells themselves—
between the larger length scale of organs and tissues and the
smaller length scales of molecules—may provide the missing link
to understand the inter-relation of these ageing scales3,17.

As integrators of molecular signals, cells offer a sensitive meso-
scale view of ageing, with cellular dysfunctions likely occurring
prior to the manifestation of age-related disorders and diseases at
the clinical level. Populations of cells typically display dynamic
and heterogeneous phenotypes in the context of health and
disease18,19. In a previous study, we demonstrated that ensemble
functional biophysical properties of cells, such as cytoplasmic
stiffness, force generation, and morphology, which typically
capture time-independent (i.e., snapshot) cellular phenotypes,
encode essential ageing information that can be used as robust
biomarkers of ageing in healthy individuals17. However, it is still
unclear how this ageing information is encoded, and its potential
role in developing innovative approaches for precision health. We
postulate that the tracking and analysis of dynamic ageing phe-
notypes at the cellular level could provide a unique perspective,
and offer mechanistic insights into the ageing process20. Fur-
thermore, this approach to study dynamic cell properties may
provide more information compared to snapshots of cell phe-
notypes obtained from fixed cells.

In this study, we analyze single-cell motility patterns of pri-
mary dermal fibroblasts obtained from healthy donors spanning
an age range from 2 to 92 years old. Using a combination of bulk
and single-cell analysis tools, we show that cells can be classified
into various motility states based on spatial and activity (i.e.,
consistent versus sporadic) patterns. We then demonstrate that
the age-associated decrease in overall cell motility was linked to
the fractional re-distribution of cells among the identified motility
states, with a significant decrease in cellular heterogeneity for
older adults (>65 years) relative to post-adolescent adults (29–65
years).

Results
Global decrease in bulk cell motility with increasing age.
Coordinated cell movements are essential for the development of
tissues and organs, in homeostasis and disease3,17. As cells move,
there is an intricate coordination of biophysical and biomolecular
programs that change with age, some of which involve the
modulation of cellular biomechanics, adhesion and regulated
dynamics of the cytoskeleton within cells21,22. To elucidate pos-
sible age-related changes in cell motility patterns, we procured a
panel of primary dermal fibroblasts from healthy donors span-
ning an age range, from 2 to 92 years old (Supplementary Data 1).
Using time-lapse microscopy, we recorded and tracked the

spontaneous movements of these cells seeded on type-I collagen-
coated substrates (see “Methods” section). Analyzing cell trajec-
tories (Supplementary Data 2), we computed averaged mean-
squared displacements (MSDs) of cells and found trends towards
an age-dependent decrease in overall cell motility17,23 (Fig. 1A,
B). In particular, the values of mean-squared displacements
(MSDs) evaluated at time lags of 6 and 60 min (MSD6 and
MSD60) and corresponding average speeds (SP6, SP60) decreased
steadily with age (Supplementary Fig. 1A–J). These time lags of 6
and 60 min were chosen because they correspond to time scales
shorter and longer than the average persistence time of cell
motility across all ages (Supplementary Fig. 1A–D).

Building on these findings, we then asked whether cells taken
from young donors displayed distinct spatial motility patterns
compared to cells derived from older adults. Analyzing the
motility data based on the recently introduced anisotropic
persistent random walk (APRW)24,25, a framework that recog-
nizes that cell trajectories do not always follow random walks
even on 2-dimensional substrates, we first assessed the similarity
of cell movements per unit time, given by the magnitude of the
autocorrelation of cell velocities (see “Methods” section). We
observed a faster decay in the autocorrelation function of
successive migratory steps with increasing age (Fig. 1C), which
suggests shorter persistence times, or more frequent changes in
the direction and velocity of cells with increasing age. We then
asked whether this bulk decrease in motility was accompanied by
a bias in the spatial polarity of cell movements, or a similar
likelihood of movements in all directions. Quantifying the
angular velocity profiles of cells, we found that cells from young
donors exhibited an ellipsoidal profile of angular velocities and a
tendency towards a circular profile for cells from older adults
(Fig. 1D). This indicates a loss in spatial persistence and
directionality of cell trajectories with increasing age. Together,
these results indicate that dermal fibroblasts show a loss in both
temporal and spatial ensemble persistence with increasing age,
with cells from older adults displacing less with frequent changes
in their movement direction.

To systematically define bulk age-dependent motility patterns,
we computed the Pearson correlation coefficients for ten
parameters that describe age-dependent spatial movement
patterns of cells (see “Methods” section). These parameters
include the magnitudes of cellular displacements and speeds
(MSD6, MSD60, SP6, and SP60), the total diffusivity and
diffusivities along primary and secondary axes of migration
(Dtot, Dp, and Dnp), the persistence times along the primary and
secondary axes of migration (Pp, Pnp), and the spatial
persistence/anisotropy (ϕ). This analysis showed negative age-
associated correlations for all motility parameters (Fig. 1E, F and
Supplementary Fig. 1K, L, Supplementary Data 3), further
highlighting the notion of overall decreased cell motility with
increasing age (Supplementary Fig. 1A–J).

Given the significant age-associated changes in cell motility, we
asked whether the motility patterns of individual cells could
provide insights that are not fully appreciated from the above
bulk quantification. Plotting the x–y trajectories for all cells on the
same length scale, we qualitatively observed the aforementioned
global decrease in cell displacements based on the origin-centered
footprint of cell trajectories with increasing age (Fig. 1G, top
panels). However, closely examining the movement patterns of
individual cells, we observed extensive cell-to-cell variations and
the presence of cells having both motile and non-motile patterns
from the same donor (Fig. 1G, bottom rows).

Age-dependent decrease in cell motility corresponds to a
redistribution among spatial clusters. Prompted by the
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magnitude of the observed cell-to-cell variations in cell movement
trajectories (Fig. 1G), we hypothesized that the age-dependent
decreases in cell motility was not due to decreased cell move-
ments in all cells, but results from an age-dependent redistribu-
tion of the proportions of motile versus non-motile cells. Pooling
the cell trajectories across all ages, we first log-normalized the
motility parameters defined above, then computed the z-scores
per parameter to allow direct comparison across the same
numerical scale (Supplementary Fig. 2 and see “Methods” sec-
tion). Using unsupervised hierarchical clustering (see “Methods”
section), we determined inherent cell-based and parameter-based
groupings using the “City block” distances along the axis of
maximum variation (ward linkages). We identified eight spatial
clusters (Pn) based on groups of cells having similar magnitudes
of displacements/diffusivity, and spatio-temporal persistence
(Fig. 2A). In addition, we identified three clusters based on the
similarity of trends among motility parameters for all ages
(Supplementary Fig. 3A, B), primarily describing trends related to

magnitude of displacements-G1 (Dp, Dtot, MSD6, and MSD60),
persistence/directionality in primary axis of movement-G2 (Pp,
ϕ) and non-persistence-G3 (Pnp, Dnp) (Fig. 2A, B).

To understand the differences among cell-clusters and decipher
what each cluster represented, we plotted the trajectories of
individual cells within each cluster. Visual inspection indicated
distinct patterns of cell movements in each cluster (Fig. 2C). For
instance, cluster 3 (P3) corresponded to cells having a high degree
of persistence and diffusivity, whereas cluster 8 (P8) comprised of
non-motile cells characterized by small displacements, low
diffusivity and low persistence (Supplementary Fig. 4).

Continuing to address our hypothesis of fractional redistribu-
tion of cells, we plotted two-dimensional t-stochastic neighbor
embedding (t-SNE) maps for all cells (each dot represents a single
cell). Coloring them based on the eight spatial clusters
determined using the hierarchical clustering, we observed a
confirmation of segregated groups of cells (Fig. 2D). Using this
same t-SNE layout, we then painted each cell according to their
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Fig. 1 Global decrease in ensemble cell motility with increasing age. A Age-dependent mean-squared displacements (MSD) of dermal fibroblasts with
color code indicating the age of the donor (blue-to-red), an exponent alpha of 1 denotes pure diffusion. B Age-dependent probability functions of cell
displacements at time lags equal to 6 min (dashed lines) and 60min (solid lines). C Auto-correlation function of velocities (ACF) measured at 3 min time
lags. D Angular velocity magnitudes as a function of the donor age, “circular” denotes similar likelihood for all angles and “ellipsoidal” indicating a
polarization of cell movements along primary axis of migration. Color coding in B also applies to C, D. E Heatmap showing the magnitude of the correlation
between motility parameters (z-score normalized) and age. Dendrogram branches indicate unsupervised hierarchical clustering with ward linkages of the
cityblock distances of parameters. Red-to-green signifies low-to-high Pearson correlation coefficient. These parameters include total diffusion (Dtot),
diffusion along the primary and secondary axes of cell movements (Dp and Dnp), measure of the spatial persistence—anisotropy of the cell movements
(ϕ), persistence time of cell motion along the primary and secondary axes of cell movements (Pp and Pnp), average cell speed at time lags of 6 and 60min
(S6 and S60), and the MSD measured at time lags of 6 and 60min (MSD6 and MSD60). F Heatmap showing the magnitude of cross correlations
of motility parameters across all cells for all ages, range of Pearson correlation coefficients = 0.39–0.94. G Cell migration patterns and trajectories
for primary dermal fibroblasts collected from healthy donors with ages spanning 2–92 years. Top panels show origin-centered trajectories for all cells
per age; bottom panels show a grid of x–y trajectories for 25 randomly selected cells per age. The number of tracked cells per sample is indicated in
the upper left corner of the plot.
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respective ages to determine whether certain clusters were defined
by cells from a particular age (Supplementary Fig. 5). Interest-
ingly, we found that cells from the same donor were
intermittently distributed among all eight clusters (Fig. 2E). To
appreciate the fractional abundances of cells within each spatial
cluster (Pn), we plotted the frequency distributions for all cells
per donor (Fig. 2F and Supplementary Data 4), which revealed
progressive age-associated changes in the abundance of cells
within various clusters. Specifically, cells from young donors
tended to favor motility patterns described by P1–P4, while cells

from older adults favored phenotypes described by P5–P8
(magenta lines, Fig. 2F).

Together, results indicate an inherent polarization of the
motility patterns based on spatial clusters exhibited by cells
derived from young and older adults. In addition, cells derived
from post-adolescent/adults exhibited flattening of the average
abundance of cells from the two major groups of clusters
(magenta lines), suggesting age-associated changes in cellular
heterogeneity. However, even though we observed a general trend
regarding the age-dependent polarity in abundances, individual
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Fig. 2 Age-associated spatial motility patterns at the single-cell level. A Heatmap showing eight motility parameters measured at the single-cell level
across all ages (n = 860 cells); each row represents a single cell and each column a motility parameter. Dendrogram branches represent hierarchical
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indicated in each plot, scale bar = 50 µm. D Two-dimensional t-SNE visualization for the eight color-coded spatial clusters. E Age-painted t-SNE plot
showing the distribution of ages per spatial motility cluster. F Frequency distributions indicating the fractional composition of cells per cluster as a function
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donors exhibited unique cluster-profiles (i.e., abundances for each
spatial cluster) (Fig. 2F).

To quantify this age-associated heterogeneity, we grouped
donors into three age groups based on categories defined in the
literature to be associated with various clinical ageing
characteristics26,27; young (A02, A03, A09, A11, and A16),
post-adolescent/adults (A29, A35, A45, and A55) and older adults
(A65, A85, and A92), then computed the Shannon entropy (S)
within each age group, defined as28 (Fig. 2G):

S ¼ "
XN

i

pi : lnðpiÞ;

Here, pi = ni/N is the proportion of cells belonging to each
spatial cluster Pn, where ni is the number of cells within spatial
cluster i, and N is the total number of cells within that spatial
cluster. The Shannon entropy measures the degree of uncertainty/
disorder within a distribution. In our case, the entropy is used as a
surrogate for the intrinsic heterogeneity for a population of cells
based on the abundance of cells within each of the defined spatial
clusters. Here, the more uniform the distribution (i.e., similar
abundance/flatter) the greater the entropy (Fig. 2H–I).

In sum, our results indicate that individual cells can be
classified based on spatial patterns of their movements, with the
magnitude of the average age-associated motility being approxi-
mated as the sum of weighted averages among spatial clusters per
age (Supplementary Fig. 6), with a reduced cellular heterogeneity
for older adult donors (>65 years) relative to post-adolescent
adults and young donors.

Cellular activity helps to describe age-dependent cell motility.
We next asked whether cells exhibited age-dependent differences
in their activity patterns in efforts to better capture the intrinsic
bursty dynamics based on the cell movement profiles29. This
analysis provides insight into the fraction of time cells spend
moving versus at rest, and whether cells moved consistently or
sporadically. To determine the activity of individual cells, we
converted each two-dimensional x–y trajectory (Fig. 3A) into a
one-dimensional displacement profile (Fig. 3B, see “Methods”
section). We then computed the activity profile of each cell,
normalized based on the z-score, then determined the magnitude
(size of peaks) and frequency (number of peaks) of cellular
movements. Pooling the activity profiles for all cells across all
ages, we utilized unsupervised hierarchical clustering based on the
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“City block” distances along the axis of maximum variation
(“ward” linkages) to segregate individual cells into activity clus-
ters (ACn). This analysis yielded four activity clusters (Fig. 3C),
each being defined based on the frequency and magnitude of the
peaks per elapsed time (Fig. 3D). For instance, activity cluster 1
(AC1) described cells having long periods of consistent move-
ments (flat sections of the profiles) with infrequent short-duration
bursts, whereas cluster 2 (AC2) exhibited frequent bursts of
varying durations.

To visually determine what these activity patterns represent, we
plotted the x−y trajectories for cells categorized within each
cluster (Fig. 3E). Visual inspection of categorized cells per activity
cluster did not reveal overt patterns of movement based on
displacement magnitude, however, clusters were populated by a
mixture of both motile (i.e., high displacing) and non-motile (i.e.,
low displacing) cells. These findings suggest that both motile and
non-motile cells can exhibit similar activity profiles and
consistency in movement/rest relative to their baseline. To
further build on this finding, we took the activity profiles of each
cell and asked whether applying a point-process analysis (see
“Methods” section) could better reveal a biological meaning.
Taking the normalized activity profile for each cell, we used a
threshold of one standard deviation above the baseline and
computed the amount and frequency of movements, thereby
defining trains and lags, computed based on the number of
consecutive time steps above and below the standard deviation,
respectively (Supplementary Fig. 7A, B). Compiling the binarized
activity profiles for each cell across all ages (Supplementary
Fig. 7C), we computed the distribution of trains (having a
binarized activity of “1”) and lags (having a binarized activity of
“0”) (Supplementary Fig. 7D, E). Results indicated that the four
clusters can be defined based on the magnitudes of the trains and
lags, for instance cells in cluster AC1 displayed significantly
shorter trains and long lags (Fig. 3F, G), compared to longer
trains and short lags observed for cells in clusters AC3 and AC4.
In addition, cells classified as AC1 were more similar in the
duration of their trains and lags relative to cells classified in AC3
and AC4, shown by the lower coefficient of variance (Fig. 3H, I).
Furthermore, cells from young donors were significantly enriched
for AC1 (i.e., suggesting that they move consistently), while cells
from older adults were significantly enriched for AC2 with
significant depletions for AC1 and AC4 (Fig. 3J and Supplemen-
tary Data 5).

Together, the findings indicate that quantifying the bursty
dynamics of cell movements relative to their baseline (i.e.,
activity) provides a complimentary framework to describe age-
associated movement behaviors at the single-cell level.

Cellular heterogeneity, a key feature in describing age-
dependent cell motility states. Given the complimentary infor-
mation provided by the spatial and activity patterns, we asked
whether enrichments or depletions in particular clusters could
define age-dependent motility states. By combining both types of
information per cell, we could therefore investigate how spatial
and activity patterns describe the landscape of age-associated
motility phenotypes. Compiling the number of cells belonging to
each of the thirty-two possible motility states (i.e., eight spatial
clusters and four activity clusters), we plotted frequency heatmaps
per age (Supplementary Fig. 8) and age group (Fig. 4A), which
revealed topographic regions of high-frequencies and low-
frequencies. To determine whether these high-frequency and
low-frequency states were significantly enriched or depleted for
cells as a function of age, we computed the statistical significance
based on the null hypothesis describing the expectation at ran-
dom. Utilizing a randomization test with 10,000 permutations, we

asked whether the observed frequencies per state was significantly
different from the expectation at random for each age group
(Supplementary Data 6–7). These results validated what was
visualized based on the heatmaps (Fig. 4A), indicating significant
enrichments and depletions, respectively. For instance, young
donors were significantly enriched (p < 0.05) for P1–3 and AC1
and depleted for AC3 and P4, indicating an enrichment for cells
exhibiting high displacements, persistence and consistent move-
ment (with few regions of sporadic movement), (Fig. 4B and
Supplementary Data 7). Prompted by these differences in the
abundances of cells per motility state, we computed the Shannon
entropy of each of the three age groups, which showed a statis-
tically significant reduction in cellular heterogeneity for older
adults (>65 years) (Fig. 4C).

Together, our result indicate that age-associated cell motility
states can be described based on the combined spatial and activity
patterns of cellular movements, and is characterized by a
redistribution among motility states and reduced heterogeneity
for older adults.
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Fig. 4 Spatial and activity clusters define age-dependent cell motility
states. A Heatmaps showing the frequency per motility state defined by
the eight spatial and four activity clusters: young (A02, A03, A09, A11, and
A16), post-adolescent/adult (A29, A35, A45, and A55), and older adults
(A65, A85, and A92). Color scales indicate the frequencies of cells within
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(yellow), older adults (red). C Quantification of the Shannon entropy based
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Discussion
In most cell motility analyses, although cells are tracked at the
single-cell level for motility experiments, parameters are routinely
reported as bulk averages such as average displacements, speed,
and persistence. Taking advantage of the single-cell nature of our
motility measurements, we quantified changes in cell motility
patterns not fully appreciated from standard bulk analysis
(Fig. 1A–F). Previous studies using a single-cell approach showed
that mouse embryonic fibroblasts and myoblasts display hetero-
geneous phenotypic states across multiple scales with the
potential for cell state-transitions18,20. Taking a similar approach,
we pooled the individual trajectories for all cells across all ages to
identify eight spatial clusters (Fig. 2A–C and Supplementary
Fig. 4A) and four activity clusters (Fig. 3C–E). These clusters
describe groups of cells having similar motility phenotypes.
Combining the spatial and activity patterns of single cells, we
defined age-dependent motility states (Fig. 4A, B). This approach
and findings highlight the immense amount of information that
can be extracted at the single-cell level5,19,30, and demonstrates
that dermal fibroblasts derived from healthy donors comprise a
mixture of motile and non-motile cells, which redistributes as a
function of age (young, post-adolescent/adults, or older adults).
This is an important finding since it provides a different outlook
of ageing at the cellular level, and a potential mechanism of how
populations of cells encode and manifest age-dependent pheno-
types. For instance, our data suggests that this age-associated
decrease in overall motility is partly encoded in the cellular het-
erogeneity, with motility parameters being approximated as a
weighted-average based on the abundance of cells within spatially
defined patterns of movement (Supplementary Fig. 6A, B). In
addition, assessing cellular heterogeneity is an important feature
to improve our understanding of emergent phenotypes in the
context of ageing in health and disease31–34.

Developing portraits of ageing at the single-cell level could allow
the investigation of novel questions regarding possible age-
dependent phenotypic transitions. For instance, we wondered
whether we could use the likely progression order among spatial
clusters to identify age-associated motility tendencies (see “Meth-
ods” section), such as whether the age-associated decrease in cellular
persistence preluded the decrease in displacement. To address this,
we computed the magnitude of the cross-correlation coefficients
among each clusters (P1–P8), and the strength of the correlation
based on the abundance of cells within each spatial cluster with age
(Supplementary Fig. 9A–C). Together, these correlation trends
describe the likely transition order among clusters as a function of
age, thereby providing insights into the order of changes in per-
sistence and displacements. Our data suggests that cells tend to
decrease their displacements before losing their ability to move in a
persistent manner with increasing age (Supplementary Fig. 4D).

In summary, we have demonstrated that singe-cell approaches
can capture age-associated emergent patterns of cell motility. We
anticipate that the increased implementation of modern single-
cell analyses and approaches could lead to a more comprehensive
understanding of ageing, with the potential to identify cellular
states and phenotypic patterns that could have applications in the
development of proxies of ageing in the context of health and
disease. While these findings improve our present understanding
of cellular determinants of ageing with regard to motility patterns,
it remains unclear whether and how cells transition across
motility states, and the respective timescales and rates as a
function of increasing age. Moreover, the diversity in cellular
phenotypes observed with age is likely linked to underlying
molecular programs, cellular subtypes and cell cycle states that
altogether influence the motility patterns of cells5,35. We antici-
pate that future work is needed to address this, which will require
the development of new technologies and imaging modalities to

dynamically assess both motility and the underlying molecular
status of cells (e.g., cell cycle, epigenetic status—DNA and histone
methylation, protein expression and localization) in a large cohort
of well annotated healthy donors (cross-sectional and long-
itudinal), imaged for prolonged periods of time (order of days).

Methods
Cell culture. A panel of twelve early-passage, primary dermal fibroblasts ranging in
age from 2 to 92 years old (GM00969, GM05565, GM00038, GM00323, GM06111,
AG04054, AG11796, AG08904, AG09162, AG12940, AG09558, and AG09602),
were obtained from Coriell Biobank cell repository (Camden, NY, USA), from
collections comprising the Baltimore Longitudinal Study of Aging (BLSA) and
the NIGMS apparently healthy controls. Cells were cultured in high-glucose
(4.5 mg/ml) DMEM (Gibco), supplemented with 15% (vol/vol) fetal bovine serum
(Hyclone), and 1% (vol/vol) penicillin–streptomycin (Gibco). Cell cultures were
passaged every three to four days or when flasks were at ~80% confluence, for a
maximum of five passages used for motility experiments. Data for cell trajectories
for 860 cells across all ages can be found in Supplementary Data 2. For motility
experiments cells were seeded on type-1 collagen-coated substrates in order to
maintain viable, adherent and active fibroblasts, (i.e., akin to other tissue culture
coatings, e.g., poly-L-lysine). In addition, since fibroblasts secrete large amounts of
collagens, we rationalized that having a type-1 collagen-coating (the most abundant
in skin) would allow the cells to move more efficiently.

Quantification of cell motility. Fibroblasts were seeded at low density
(~2000 cells/ml) onto type-1 collagen-coated (50μg/ml) substrates in 24-well
plates and allowed to adhere overnight. Once cells attached, the plate was
mounted unto a Nikon TE2000 microscope equipped with a motorized stage with
X–Y–Z controls (Prior scientific) and environment control to maintain physio-
logical conditions of temperature (37 °C), Carbon dioxide (5%) and humidity
(Pathology Devices). Phase-contrast images were recorded every 3 min for 16 h
using a Cascade 1K CCD camera (Roper Scientific) with a low magnification
10× Plan Fluor objective (numerical aperture, 0.3; Nikon). Cell motility para-
meters were determined from x–y coordinates obtained from the cell-centroid
tracking of individual cells (MetaMorph). Cells undergoing division, moved out of
frame, or had long contact times with other cells were omitted from analysis. Only
cells having ten continuous hours of trackable movements that did not meet the
above exclusion criteria were used for the final analysis. X–Y coordinates were
then exported for analysis in Matlab for the quantification of spatial24 and activity
parameters described below.

To quantify the spatio-temporal patterns of motility, we analyzed bulk cell
movements based on trajectories using the Anisotropic Persistent Random Walk
model (APRW)24. From this analysis we generated the parameters that describe the
movements of the cells, (MSD60, MSD6, SP60, SP6, Pp, Pnp, Dp, Dnp, Dtot, and
ϕ), together with the mean-squared displacements, the auto-correlation function of
velocities and the angular velocity magnitudes, which were computed and fitted
based on the following equations:

MSDðτÞ ¼ xðt þ τÞ " xðtÞÞ2þyðt þ τÞ " yðtÞÞ2
! "

;

MSDp τð Þ ¼ S2pPp τ " Pp 1" e"τ=Pp
# $

þ 2σ2p
# $

;

MSDnp τð Þ ¼ S2npPnp τ " Pnp 1" e"τ=Pnp
# $

þ 2σ2np
# $

;

where S is the cell speed, P is the persistence time, 2σ2 is the noise (error) in the
position of the cell, τ = nΔt and n = 1, 2,… Nmin−1, Δt is the size of the time step:

ACF τð Þ ¼ dx tð Þdx t þ τð Þ þ dy tð Þdxðt þ τÞh i;

where

dx tð Þ ¼ x t þ dtð Þ " xðtÞ;

dy tð Þ ¼ y t þ dtð Þ " yðtÞ;

τ ¼ ndt;

n ¼ 1; 2; ¼ :

Defining spatial motility clusters. Cell motility parameters describing the cells’
displacements, speeds, persistence times, diffusivities, and the spatial persistence/
anisotropy were computed using the anisotropic persistence random walk model
(APRW)4,5. For bulk motility analysis, ten motility parameters (MSD60, MSD6,
SP60, SP6, Pp, Pnp, Dp, Dnp, Dtot, and ϕ) were computed for each cell. For bulk
analysis, parameters were averaged across all cells per age and the magnitude of the
Pearson correlation coefficient was determined (Fig. 1F and Supplementary Fig. 1).
For single-cell analyses, the distributions of motility parameters were log nor-
malized to generate a normal distribution per parameter (Supplementary Fig. 2).
This resulted in the reduction of motility parameters from ten to eight (MSD60,
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MSD6, Pp, Pnp, Dp, Dnp, Dtot, and ϕ), since the normalized MSD6 was roughly

equal to SP6, and MSD60 equal to SP60, (i.e., SPx ¼
ffiffiffiffiffiffiffiffiffi
MSDx

p
τx

, where τ = time lag).
Following the normalization, the eight motility parameters were used to define the
spatial clusters (Pn). Spatial clusters were defined based on the abundance of cells
having similar magnitudes of the eight features defined in the APRW model.
Specifically, the motility features were computed for each cell and compiled for all
cells across all ages. Importing this data into Matlab, we performed unsupervised
hierarchical clustering analysis based on the Cityblock distances along the axis of
maximum variation (ward linkages). This clustering analysis resulted in the stra-
tification of cells into eight clusters (P1–P8).

Determining the likely progression order. To determine the likely progression
order with age, we computed the magnitude of the correlation for the abundance of
cells per cluster with age, and the cross correlation among clusters. Once the
correlation coefficients were determined, the correlations of cell abundances with
age were ranked to determine the overall progression order. In addition to
determine the linkages (length—strength of cross-correlation) of clusters we also
ranked the correlations among clusters to determine the cluster-to-cluster proxi-
mity. Once both sets of correlations were compiled, a network were constructed
such that the size of the nodes were scaled based on the number of cells in each
cluster, and the cluster-cluster proximity denoted the strength of the cross corre-
lation. The magnitudes of the Pearson correlation coefficients were computed in
Matlab, (R = corrcoef(A), where “R” is the Pearson correlation coefficient and “A”
is the data matrix of cell abundances.

Quantifying the activity profiles per single cell. To determine the activity
profiles of individual cells, the raw x−y trajectories for each cell were converted
into 1-dimensional displacement trajectories (Fig. 3A, B). Here, the temporal
displacement frequencies and the presence/absence of spikes (burst of movement)
and trains (continuous bursts of movements) defines the activity space. We
computed the activity based on the displacements according to this equation:

x tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

p
;

where Δx ¼ x tð Þ " xðt " 1Þ and Δy ¼ y tð Þ " yðt " 1Þ, are the changes in the
vector components of the cell movements in Cartesian coordinates at time t, Δt is
the time step between different measurements of cell positions.

Once this was computed for each cell, the magnitudes of the displacements were
z-score normalized per unit time so that each cell was normalized to its own
baseline movements, and comparable on the same numerical scale.

z ¼ x " μ
σ

;

where z is the z-score, x is the magnitude of the variable, μ and σ denote the mean
values and the standard deviation, respectively.

The activity was computed for all 860 single cell across all ages, then we
performed unsupervised hierarchical clustering analysis to delineate groupings of
cells having similar activity profiles. This was done in Matlab based on the
Cityblock distances along the axis of maximum variation (ward), which yielded five
clusters that we later interrogated to identify cluster-dependent motility patterns.

To calculate the binarized activity, the continuous activity profile was
transformed into a binary matrix of 1’s and 0’s denoting trains and lags. Trains
denote bursts of movements one standard deviation above the baseline movement,
and lags denotes time steps at baseline and below the threshold. Distribution of
trains and lags were computed by compiling the series of 1’s and 0’s within each
temporal activity pattern for all cells and compiles per activity cluster, respectively.

Computing cellular heterogeneity. To quantify the heterogeneity among cells
(both for spatial and activity clusters) we utilized the Shannon entropy. Here the
entropy S was calculated as:

S ¼ "
XN

i

pi : lnðpiÞ;

where pi corresponds to the fractional abundance of cells within the particular
cluster, for each age group N (young, middle age, and older adults). The entropy
was determined on both a per age and age-groups, based on the abundance of cells
per cluster (i.e., both spatial and activity). Entropy per age group was computed by
taking the average of entropies per age (young-A02, A03, A09, A11, and A16; post-
adolescent/adults-A29, A35, A45, and A55; older adults-A65, A85, and A92).

Quantifying enrichments and depletions of motility clusters and states. To
determine whether the clusters defined above (spatial and activity) were sig-
nificantly depleted or enriched as a function of age or age groups, we utilize a
randomization strategy. For each cluster “i”, we obtain two p-values per age cor-
responding to null hypotheses of under-representation (depletion) and over-
representation (enrichment), respectively. Specifically, for each cluster “i” and for
each age or age-group “k”, we compare the observed frequency of cells with a
distribution of expected frequencies of cells of age k, built by from N samples

(50,000 permutations) of the size of cluster “i”.

Pe ¼
exp ≤ obs

N
;

Pd ¼ exp ≥ obs
N

;

where “exp” denotes the simulated abundance based on the null hypothesis, and
“obs” denoted the observed abundance of cells per cluster/state. Pe and Pd denote
the p-values for the enrichment and depletion, respectively.

Statistics and reproducibility. All experiments were conducted with in-plate
technical controls in triplicates. The specific number of cells used in analysis are
denoted in the main figures for each section. Correlation analysis was conducted
using the Pearson correlation coefficients, and statistical significance were assessed
using either t-tests or one-way ANOVA. To compute the significant enrichments
and depletions within each of the 40 defined motility states, we employed a ran-
domization enrichment test for 50,000 permutations and compared to observed
frequencies. Significance was determined based on the magnitude of the p-values.
All cells measured was used for analysis, no samples were intentionally removed
from the dataset.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings in this study are available within
the paper and its Supplementary documents/information.
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