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KEY PO INT S

l A high-throughput
screen identified
hypomethylating
agents as inducers of
latency III viral
antigens in latency I
EBV1 BL.

l Induction of latency III
antigens in BL
sensitizes resistant
tumors to
T-cell–mediated lysis
with EBV-specific
cytotoxic T
lymphocytes.

Despite advances in T-cell immunotherapy against Epstein-Barr virus (EBV)-infected lym-
phomas that express the full EBV latency III program, a critical barrier has been that most
EBV1 lymphomas express the latency I program, in which the single Epstein-Barr nuclear
antigen (EBNA1) is produced. EBNA1 is poorly immunogenic, enabling tumors to evade
immune responses. Using a high-throughput screen, we identified decitabine as a potent
inducer of immunogenic EBV antigens, including LMP1, EBNA2, and EBNA3C. Induction
occurs at low doses and persists after removal of decitabine. Decitabine treatment of
latency I EBV1 Burkitt lymphoma (BL) sensitized cells to lysis by EBV-specific cytotoxic
T cells (EBV-CTLs). In latency I BL xenografts, decitabine followed by EBV-CTLs results in
T-cell homing to tumors and inhibition of tumor growth. Collectively, these results identify
key epigenetic factors required for latency restriction and highlight a novel therapeutic
approach to sensitize EBV1 lymphomas to immunotherapy. (Blood. 2020;135(21):1870-1881)

Introduction
The gammaherpesvirus Epstein-Barr virus (EBV) is implicated in a
variety of malignancies, including aggressive B-cell lymphomas.1

Three main latency patterns have been described for EBV, which
correlate with immune status of the patient and expression of
EBV proteins.2 In latency I, the single Epstein-Barr nuclear an-
tigen (EBNA1), EBV-encoded small RNAs, and some microRNAs
are expressed. In contrast, latency III tumors express all EBV-
encoded latent nuclear antigens (EBNA1, EBNA2, EBNA3A-C,
and LP) and latent membrane proteins (LMP1, LMP2A, and
LMP2B). Because latency III proteins are highly immunogenic,
this program only persists in severely immunocompromised
hosts. Latency II is intermediate with expression of EBNA1 and
the latent membrane proteins.

EBV-associated lymphomas include Burkitt lymphoma (BL) and
HIV-associated diffuse large B-cell lymphoma (HIV-DLBCL). In
EBV1 BL and HIV-DLBCL, EBV exists in a latency I pattern,
thereby evading immune responses to EBV.3,4 In contrast, EBV1

posttransplant lymphoproliferative disorder (PTLD) exhibits a
latency III profile, reflecting the severity of immunosuppression

after solid organ or hematopoietic stem cell transplant.5 Since
the latency III program is highly immunogenic, PTLD can often
be eradicated with restoration of the host immune response
through reduction of immunosuppressive therapy.6 PTLD has
also been successfully treated with ex vivo–derived EBV-specific
cytotoxic T lymphocytes (EBV-CTLs).7-11 Similarly, latency II tu-
mors have been successfully treated with EBV-CTLs directed
against the latency II/III antigen LMP1.12 This therapeutic ap-
proach fails in latency I tumors due to restricted viral antigen
expression.

We hypothesized that pharmacologic modulation of latency I
tumors could induce immunogenic latent viral antigen expres-
sion and that this would sensitize resistant tumors to EBV-
directed immunotherapy. We identified the hypomethylating
agent decitabine as a potent inducer of the immunogenic EBV
proteins LMP1, EBNA2, EBNA3A, and EBNA3C in BL. Induction
of these antigens resulted in homing of EBV-specific T cells to
tumors and sensitized tumor cells to T-cell lysis, suggesting that
hypomethylating agents followed by EBV-CTLs could be used as
a novel therapeutic approach in latency I EBV1 lymphomas.
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Methods
Cell culture, immunoblot, immunohistochemistry
(IHC), qRT-PCR, and reagents
Cell viability was determined using CellTiter-Glo (Promega) and
the GloMax Multi1 detection system (Promega). The 50%
inhibitory concentration (IC50) was calculated using Prism6
software. Quantitative reverse transcription polymerase chain
reaction (qRT-PCR) was performed on the ABI 7500 Fast PCR
system (Thermo Fisher Scientific) using TaqMan primers and
probes for BZLF1, LMP1,Cp, andGAPDH as previously described.13

Further details are outlined in supplemental Methods (available on
the Blood Web site).

Xenograft models
Nonobese diabetic-severe combined immunodeficiency and
NOD scid gamma (NSG) mice were obtained from Jackson
Laboratories. Six to 8-week-old mice were injected sub-
cutaneously in the flank with 13 107 BL cells in PBS withMatrigel
(Corning). Tumors were measured by bioluminescent imaging
performed using the IVIS Spectrum, with retroorbital luciferin
injections. At sacrifice, tumors were harvested for RNA, DNA,
and protein and sectioned for IHC.

EBV-CTLs and chromium release assay
EBV-CTLs were generated from peripheral blood mononuclear
cells separated by low-density separation from peripheral blood
of normal consented donors by stimulation with autologous
B cells transformed with B95.8 EBV as previously described.7,14

Additional details can be found in supplemental Methods.

DNA methylation analysis using MassARRAY and
Methyl Capture
Details are described in supplemental Methods. PCR primers
specific for EBV are listed in supplemental Table 4.

Statistics
A 2-tailed, unpaired Student t test was used unless otherwise
specified. All statistical analyses were performed using Prism
software (GraphPad).

Study approval
The research and animal resource center of Weill Cornell
Medical College and Memorial Sloan-Kettering Cancer Center
approved all murine studies.

Results
High-throughput screen identifies small molecules
that induce expression of latency III viral genes in
EBV1 BL
To identify small molecules that convert a latency I EBV1 lym-
phoma to the latency II or III program, we optimized conditions
for a high-throughput pharmacologic screen using latency I
EBV1 BL cells. To select an appropriate cell line for our screen,
we characterized latency in a panel of EBV1 BL cell lines. Mutu I,
Kem I, Rael, Daudi, Raji, and Jiyoye BL cells were probed by
immunoblot for EBNA1, LMP1, and EBNA3C. Kem I, Mutu I, and
Rael expressed EBNA1 alone, indicative of latency I pattern. Raji
and Jiyoye expressed high levels of LMP1 and Daudi expressed
low levels of EBNA3C, likely due to a latency switch in culture

(Figure 1A). Based on this, we selected Kem I for the screen
and Rael and Mutu I for validation. LMP1 transcript level, as
measured by qRT-PCR, served as the readout for the screen,
since this would identify cells converting to latency II or III.
Since LMP1 is also expressed in lytic viral replication, we
evaluated the early lytic gene BZLF1 to characterize induction
of lytic virus.

Kem I cells were incubated with small molecules using drug
plates containing 441 validated cancer compounds (supple-
mental Table 1; adapted from Selleckchem catalog #L3500). This
library was selected to include structurally diverse compounds
covering .200 targets, including drugs targeting apoptosis,
proteasome function, and epigenetic targets, as well as
phosphatidylinositol 3-kinase (PI3K)/AKT, MAPK, JAK, and
others. Cells were exposed to agents at 1 or 2.5 mM for
48 hours. We selected this dose range because we were in-
terested in doses high enough to induce latency switch, but
not cell death. LMP1 and BZLF1 expression were quantified by
in-well qRT-PCR. The screen was performed twice. A com-
pound was considered a hit if it induced a twofold or greater
change in LMP1 expression. Unsupervised clustering analysis
of fold change in LMP1 revealed a group of 33 compounds
inducing a two-fold or greater change in both replicates
(Figure 1B). A Student t test comparing the fold changes of the
nonhits (C1) vs hits (C2) yielded a a value of P, .0001. The list
of hits included epigenetic modifiers, proteasome inhibitors,
modulators of cell cycle, or DNA damage response, among
others.

To characterize common pathways of our screen hits, targets of
the 33 compounds were imported into ClueGo, and pathway
enrichments were assessed based on Gene Ontology biological
processes, Kyoto Encyclopedia of Genes and Genomes, Reac-
tome pathways, and Wikipathways. Key relevant pathways in-
cluded “viral carcinogenesis,” histone H4 deacetylation, histone
deacetylases, cell cycle, and DNA damage response (Figure 1C;
supplemental Table 2).

Since epigenetic modifiers were among the top hits in both our
screen and pathway analyses, we performed a focused screen of
epigenetic modifying agents in Kem I, Mutu I, and Rael cell lines
(Figure 1D). For this screen, we designed a custom drug plate
with agents chosen to encompass different categories of epi-
genetic modifying agents, including histone deacetylase in-
hibitors, EZH2 inhibitors, and hypomethylating agents. Drugs
were selected based on clinical relevance, with preference for
agents currently in clinical use. To evaluate induction of latency
II/III programming, we performed qRT-PCR for LMP1 and Cp,
the promoter for latency III EBNA expression. Robust induction
was observed with hypomethylating agents 5-azacytidine and
decitabine, which induced LMP1 and Cp.100-fold and.1000-
fold, respectively, in all 3 cell lines. Modest induction was also
observed with the histone deacetylase inhibitor panobinostat.
We next evaluated the combination of panobinostat and deci-
tabine to determine if combining these agents would result in
greater induction than either drug alone. The combination did
not enhance LMP1 or Cp induction beyond decitabine alone
(Figure 1E). Based on this, we decided to focus on hypo-
methylating agents.
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Figure 1. High-throughput drug screen identifies pharmacologic agents that induce latency III antigen expression. (A) Immunoblot of BL cell lines to characterize latency.
BC2, latency I control; LCL 9001, latency III control; Ramos, EBV2 control. (B) Heatmap showing the fold change in LMP1 for 2 replicates across 441 compounds. Dendrogram
branches on the right illustrate groupings based on unsupervised clustering, highlighting a cluster of 33 compounds inducing a greater than twofold change in both replicates
(blue branches). Inset shows the list of 33 compounds grouped based on similarity of pathway targets. (C) Network plot showing the pathway enrichments based on drug targets.
Each node denotes a subpathway, with colors delineating pathway groupings (see table). Nodes with multiple colors denote shared pathway groupings. (D) Focused screen of
epigenetic modifying agents. qRT-PCR for LMP1 and Cp promoter transcripts in cells treated with drug vs vehicle control for 48 hours. Data are shown as fold change in treated
cells compared with vehicle control. Experiments were performed in duplicate. Drug doses were as follows: GSK-126, 5 mM; EPZ-6438, 5 mM; romidepsin, 0.25 nM; HDAC3i,
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Decitabine treatment induces expression of EBV
latency III antigens
Since 5-azacytidine and decitabine were the top hits on our high-
throughput and epigenetic screens, respectively, we validated
the effect of these agents on latency II/III transcript and protein
expression as well as characterized dose-response in a panel
of BL cell lines. BL cells were treated with decitabine or 5-
azacytidine over a range of doses. Viral antigen expression
was evaluated by qRT-PCR, immunoblot, and IHC. Decitabine
treatment resulted in dose-dependent induction of LMP1 and
Cp transcripts at doses as low as 25 nM (Figure 2A). This was
associated with upregulation of LMP1 and EBNA3C proteins
(Figure 2B). In contrast, with 5-azacytidine, induction of LMP1
and Cp was minimal at doses ,1 mM and was not associ-
ated with significant induction of LMP1 or EBNA3C proteins
(Figure 2C-D).

To determine if induction of LMP1 and EBNA3 were linked to
hypomethylating agent–induced cell death, we exposed cells to
decitabine or 5-azacytidine over a range of doses and eval-
uated cell viability. The decitabine dose that induced maximal
latency II/III antigen expression was 25 to 500 nM, which
was far below the IC50 of the drug (.5 mM) (supplemental
Table 3). The viability relative to untreated cells in Mutu I, Kem
I, and Rael cells treated with decitabine at the optimal in-
duction dose was 62%, 128%, and 102%, respectively (sup-
plemental Figure 1). For 5-azacytidine, the optimal dose for
induction (1-4 mM) was closer to the IC50 (2.2 mM to .5 mM);
however, there was minimal change in cell viability at the
optimal dose for induction (supplemental Figure 1 and sup-
plemental Table 3). This suggests that the escape from latency
I in response to hypomethylating agents is not due to cell
death.

We next determined the percentage of cells that express latency
II/III antigens after treatment with decitabine or 5-azacytidine. To
do this, we evaluated LMP1 and EBNA2 expression at the single-
cell level by IHC in cell blocks. The percentage of positive cells
was quantified with HALO image analysis. Decitabine treatment
increased EBNA2 expression in all 3 cell lines (Figure 2E). The
percentage of EBNA2-positive cells increased from 0.13% to
28.3% in Mutu I, t (P 5 .0004), 0.03% to 57.8% in in Kem I
(P , .0001), and 0.24% to 37.2% in Rael (P 5 .0005). The per-
centage of LMP1-positive cells also increased with decitabine
treatment, from 1.04% to 41.8% (P 5 .0005), 0.31% to 54.9%
(P 5 .034), and 0.04% to 27.4% (P 5 .048) in Mutu I, Kem I, and
Rael, respectively (Figure 2F). 5-Azacytidine induced a more
modest expression of EBNA2 and LMP1 across the 3 cell lines
(Figure 2E-F). Since decitabine induced latency II/III antigen
expression in a higher percentage of cells than 5-azacytidine and
did so at lower concentrations, we elected to focus on decitabine
as a potential agent to induce expression of immunogenic viral
antigens in latency I tumors.

Decitabine induces latency III antigen expression
in vivo
To evaluate the effect of decitabine on viral antigen expression
in vivo, we generated Mutu I, Kem I, and Rael xenografts. Upon
engraftment, mice were treated with a 7-day course of decita-
bine (0.5 or 1 mg/kg daily) or vehicle control. After treatment,
tumors were evaluated by immunohistochemistry. In decitabine-
treatedmice, we observed a dose dependent increase in EBNA2
expression in all 3 xenografts (P5 .002, P5 .014, and P, .0001
inMutu I, Kem I, and Rael, respectively; Figure 3A). Dose-dependent
increase in LMP1 expression was observed in Mutu I and Kem I
xenografts (P, .001 and P, .014, respectively; Figure 3B). Induction
of LMP1 in Rael xenografts was not statistically significant despite
robust induction of EBNA2. Possible explanations for this include
genomic alterations affecting the epigenetic state of the LMP1
promoter in Rael such that EBNA2 derepression occurs but
with less EBNA2-induced LMP1 activity, baseline differences
in Rael methylation that impact the threshold for epigenetic
derepression of LMP1, and limited lytic induction in Rael
resulting in minimal lytic LMP1.

Induction of latency III antigens with decitabine
persists after removal of drug
If induction of immunogenic antigens were to be used as
therapeutic approach in EBV1 lymphomas, then it would be
important to ensure that the induction persists after removal of
drug to allow time for an adequate T-cell response. We evalu-
ated the durability of latency III induction by treating cell lines
with decitabine for 3 days and then evaluating LMP1 and Cp
promoter expression after washout of the drug. LMP1 and Cp
expression by qRT-PCR persists with minimal decrement at 1,
3, 5, and 7 days after washout of decitabine (Figure 4A). We
also evaluated Rael xenografts for durability of induction
in vivo. Tumors evaluated by immunohistochemistry 4 days
after a 7-day course of decitabine demonstrated persistent
induction with no decrement in the percentage of EBNA21 cells
(Figure 4B). Mice observed at later time points continued to
express EBNA2, with some areas of tumor remaining EBNA21 as
late as 63 days after treatment (Figure 4C). This suggests that
epigenetic induction of latency III proteins is durable long after
discontinuation of hypomethylating agents.

In addition to modulating latent gene expression, 5-azacytidine
is known to activate lytic programming in EBV.15-20 To determine
if the lytic program was being activated by decitabine, we
performed qRT-PCR for BZLF1 in Rael, Mutu I, and Kem I. We
observed an increase in BZLF1; however, this decreased over
time after removal of drug (supplemental Figure 2A), suggesting
that the effect may be more transient than latent transcript
activation. In our xenograft models, we evaluated BZLF1 by IHC.
We observed BZLF1 induction in Mutu I but minimal (#2%) or no
induction in Kem I or Rael, despite strong expression of EBNA2
and/or LMP1 in both xenografts (supplemental Figure 2B).
This suggests that separate lytic and latent populations are

Figure 1 (continued) 5 mM; panobinostat, 100 nM; 5-azacytidine, 4 mM; and decitabine, 1 mM. (E) Combination treatment with panobinostat and decitabine. qRT-PCR for LMP1
and Cp transcripts in cells treated with vehicle, panobinostat alone (100 nM), decitabine alone (1 mM), or combination. Experiments were performed in triplicate. Error bars
represent standard error of the mean (SEM). DNMTi, DNA methyltransferase inhibitor; EZH2i, EZH2 inhibitor; FC, fold change; HDAC, histone deacetylase; HDACi, histone
deacetylase inhibitor; LTR, long terminal repeat.
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Figure 2. Hypomethylating agents induce immunogenic EBV antigens. (A,C) qRT-PCR for LMP1 and Cp promoter in cells treated with drug (decitabine or 5-azacytidine) vs
vehicle control for 48 hours at the following doses listed from left to right: vehicle, 10, 25, 50, 100, 250, 500, and 1000 nM. Data are shown as fold change in treated cells compared
with vehicle control. Experiments were performed in triplicate. Error bars represent SEM. (B,D) Immunoblot for viral proteins as indicated. BL cells were incubatedwith drug at the
indicated doses for 48 hours. LCL-9001 is a latency III positive control. BC2 is a latency I control. Ramos is an EBV2 BL used as a negative control. Lower panel in B represents a
longer exposure time for LMP1. (E-F) Immunohistochemistry for EBNA2 and LMP1 in cell blocks generated from Mutu I, Kem I, and Rael cells treated as indicated. Cells were
exposed to 5-azacytidine at 4 mM, decitabine at 500 nM, or vehicle control for 48 hours. Experiments were performed in triplicate. Representative images were obtained on an
Olympus BX 43 microscope (Camera, Jenoptik ProgResCF; software, ProgRes Mac Capture Pro, 2013. Original magnification 3600 with a 60/0.80 objective lens). (G-F) Image
quantification using HALO (Indica labs). Error bars represent SEM. *P , .05, **P , .01, ***P , .001, ****P , .0001. 5-Aza, 5-azacytidine; DCB, decitabine; ns, not significant.
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potentially being activated by decitabine, with the lytic pop-
ulation being more transient.

Decitabine induces hypomethylation at key
viral promoters
The effect of decitabine across the EBV genome is not fully
characterized.21-23 To better understand the key regions of the
EBV viral genome affected by decitabine treatment, we per-
formed targeted DNA methylation analyses of key regions
across the EBV genome using EpiTYPER MassARRAY methyl-
ation analysis. We specifically evaluated DNA methylation levels
of 131 cytosine guanine dinucleotides (CpGs) in 28 EBV regions
(1-13 CpGs per region), including EBV gene promoters, gene
bodies, and introns. Regions covered include Cp, LMP1, and
LMP2A (Figure 5A; primers are listed in supplemental Table 4).
Kem I, Rael, and Mutu I cells were analyzed after treatment with
decitabine or vehicle for 48 hours. In vehicle-treated cells, we
observed a high degree of DNA methylation across the EBV
genome in Rael and intermediate levels in Kem I and Mutu I
(Figure 5B). Following decitabine treatment, we observed loss of
methylation across the EBV viral genome in all 3 cell lines, in-
cluding the Cp promoter and LMP1/2 loci, consistent with up-
regulation of these promoters.

To evaluatemethylation with increased breadth across a focused
area of the viral genome, we performed Methyl-Capture se-
quencing using a custom probe set designed to cover the first
13 kb of the EBV genome, including the OriP, EBERs, and re-
gions upstream ofCp and EBNAs (Figure 5A, “capture region for
Methyl-Capture”). Kem I, Rael, and Mutu I cells were analyzed

after treatment with decitabine or vehicle as well as after dec-
itabine followed by a 7-day washout. We also assessed DNA
methylation in vivo using tumors from Rael xenografts treated
with decitabine or vehicle control.

The analysis of bisulfite-treated sequence reads was carried out
as previously described24 with alignment to the EBV genome.
Consistent with our MassARRAY data, we observed global
hypomethylation after treatment with decitabine (Figure 5C).
After removal of drug, we observed a modest increase in
methylation; however, the genome remained hypomethylated
relative to vehicle-treated cells (Figure 5C). Tumors from our
xenograft displayed similar global hypomethylation after treat-
ment with decitabine, consistent with the induction of antigens
observed in these models. To evaluate the location of differ-
entially methylated regions, we mapped differentially methyl-
ated areas to the EBV genome using Integrative Genomics
Viewer (Figure 6). Areas of differentially methylated cytosines
included Cp and LMP2A/B.

Induction of latency III antigens sensitizes tumors
to T-cell–mediated lysis
The induction of highly immunogenic EBV antigens such as
LMP1, EBNA3A, and EBNA3C may sensitize tumors to autolo-
gous T-cell–mediated lysis and/or killing with allogeneic EBV-
CTLs. EBV-CTLs are generated in response to autologous B cells
transformed with EBV and principally recognize EBNA3 or LMP1.
In latency III EBV1 PTLDs, adoptive transfer of ex vivo–generated
EBV-CTLs can induce durable remissions.8-11
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Figure 3. Decitabine induces expression of viral antigens in BL xenograft models. (A-B) Immunohistochemistry for EBNA2 and LMP1 in tumors obtained fromMutu I, Kem I,
or Rael xenograft mice as indicated. Experiments were performed with 6 mice per condition per cell line for each of the following conditions: vehicle treatment, decitabine
0.5 mg/kg intraperitoneally daily, and decitabine 1 mg/kg intraperitoneally daily. Representative images were obtained on an Olympus BX 43 microscope (Camera, Jenoptik
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represent SEM. *P , .05, ** P , .01, ***P , .001, ****P , .0001.
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We hypothesized that induction of LMP1 and/or EBNA3 with
decitabine treatment would sensitize resistant latency I EBV1

BL tumors to allogeneic EBV-CTLs. To identify appropriately
HLA-restricted EBV-CTLs, we performed high-resolution HLA
typing on Kem I, Mutu I, and Rael (supplemental Table 5). We
then searched our bank of .330 GMP-grade alloreactive
T-cell depleted, EBV-specific T-cell lines7 and identified
appropriately HLA-restricted EBV-CTLs specific for the la-
tency II/III antigens EBNA3C, EBNA3A, or LMP1 for Mutu I
and Rael.

EBNA3C- and EBNA3A-reactive T cells were tested for cyto-
toxicity against Rael and Mutu I, respectively, using a standard
chromium-51 release assay (Figure 7A-B). A significant increase
in T-cell–mediated lysis was observed in response to Rael and
Mutu I after decitabine treatment across a range of effector-to-

target (E:T) ratios. For example, at a 25:1 E:T ratio, we observed
26.07% lysis of Rael treated with decitabine vs 6.08% with ve-
hicle (P 5 .0026; Figure 7A). Similarly, 16.17% of Mutu I cells
treated with decitabine were lysed compared with 0.33% of
vehicle-treated cells (P 5 .0018; Figure 7B). The degree of cell
lysis against decitabine-treated cells was comparable to that
observed against autologous EBV-positive B-lymphoblastoid
cell lines (Figure 7A-B). To confirm these findings with a third
antigen, we evaluated EBV-CTLs that recognize LMP1. These
cells were tested against Mutu I, which upregulated LMP1 upon
exposure to decitabine (Figures 2D,F and 3B). LMP1-reactive
EBV-CTLs were highly cytotoxic against decitabine-treatedMutu
I, but not vehicle-treated Mutu I, at all 3 E:T ratios. For example,
at a 25:1 E:T ratio, we observed 74.11% lysis of decitabine-
treated Mutu I compared with 0.67% of vehicle treated Mutu I
(P , .0001; Figure 7C).
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Figure 4. Decitabine induction of viral antigens persists after removal of drug. (A) qRT-PCR for LMP1 and Cp in cells treated with 250 nM decitabine vs vehicle control for
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Decitabine pretreatment of EBV1 tumors results in
T-cell homing and inhibition of tumor growth in vivo
We hypothesized that a short course of decitabine might render
latency I EBV1 B-cell lymphomas sensitive to appropriately HLA-
restricted allogeneic EBV-CTLs specific for latency II/III antigens

in vivo. To test this approach, we first evaluated EBNA3C-
reactive EBV-CTL responses against subcutaneous xenografts
of Rael cells in NSG mice. To quantitate responses we used Rael
cells transduced to express luciferase (supplemental Figure 3A).
Once engrafted, mice were assigned to 1 of 4 cohorts to receive
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decitabine vs vehicle followed by EBV-CTLs vs vehicle. As-
signment was balanced based on BLI signal. Decitabine was
administered daily for 7 days (days 1-7) followed by 2 days of rest
to allow drug clearance and reduce any interference between
decitabine and CTLs. EBV-CTLs were then infused on day 9.

Consistent with our prior experiments, treatment with decitabine
resulted in induction of latent antigens EBNA2 and LMP1, with
minimal change in the lytic protein BZLF1 (Figure 7D; supple-
mental Figure 3B). To evaluate tumors for T-cell trafficking, we
performed IHC for CD8 on tumors at days 19, 47, and 70. A
robust T-cell infiltrate was observed in mice that received
decitabine followed by EBV-CTLs, but not in mice that received
vehicle followed by EBV-CTLs or any other condition (Figure 7E).
We also observed inhibition of tumor growth as measured by
in vivo bioluminescence inmice that received decitabine followed
by EBV-CTLs when compared with mice that received EBV-CTLs
without decitabine (P 5 .03; Figure 7F; supplemental Figure 3C).
Notably, decitabine treatment did not increase PD-L1 expression
(supplemental Figure 3D), suggesting that this approach can be
used without derepressing PD-L1 in these tumors.

In a second xenograft model, we evaluated LMP1-reactive EBV-
CTLs in Mutu I xenografts. Upon engraftment, mice were
assigned to receive decitabine vs vehicle followed by EBV-CTLs

vs vehicle as above. Mice were treated with decitabine at 1 mg/kg
per day or vehicle for 3 days followed by EBV-CTLs vs vehicle.Mutu
I tumors grow rapidly in immunocompromised mice, which does
not allow mice to be followed over the time course needed to
observe for antitumor effect. In this experiment, all mice were
humanely sacrificed by day 18 to evaluate for T-cell homing. T-cell
infiltrates were observed in the tumors of mice treated with dec-
itabine followed by EBV-CTLs, but not in the mice that received
CTLs without decitabine (2.6% vs 0.08%, P 5 .03; Figure 7G;
supplemental Figure 4). These experiments demonstrate that
decitabine treatment induces T-cell recognition in vivo in latency I
tumors that otherwise would not elicit a T-cell response.

Discussion
EBV is present in nearly all cases of endemic BL in sub-Saharan
Africa and approximately 30% of sporadic BL cases throughout
other regions of the world.25 EBV is also associated with subsets
of DLBCL and classical Hodgkin lymphoma. In these tumors, the
virus evades immune surveillance through restricted expression
of viral antigens. Therapeutic approaches that target EBV are
particularly attractive in these tumors, which arise in settings
where high-dose chemotherapy may not be feasible. One ap-
proach to EBV-directed therapy is to induce lytic viral replication
and then target lytic virus with antiherpesvirus agents such as

dp
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Figure 7. Decitabine treatment results in T-cell–mediated lysis in vitro and T-cell trafficking to tumors in vivo. (A-C) Chromium-release assay in the indicated cell lines
incubated with EBV-CTLs reactive to EBNA3C, EBNA3A, or LMP1 as labeled. BL cells were treated with decitabine at 50 nM (Rael) or 250 nM (Mutu I) or vehicle control for 72
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ganciclovir.19,26 Attempts to sensitize tumors to ganciclovir have
been limited by the strong EBV propensity to remain latent.27-31

Our work explored a different approach: shifting latency to
generate a more immunogenic tumor which could then be
targeted by ex vivo–generated EBV-specific cytotoxic T lym-
phocytes or, perhaps, the host immune response.

The mechanisms by which EBV maintains restricted latency
are not well understood; however, epigenetic modulation is
likely important.32-35 Our high-throughput pharmacologic screen
identified the hypomethylating agent 5-azacytidine as a potent
inducer of LMP1. In a focused epigenetic screen, which included
hypomethylating agents, histone deacetylase inhibitors, and
histonemethyltransferase inhibitors, we found the hypomethylating
agents 5-azacytidine and decitabine to induce LMP1 and Cp at
levels that could not be achieved with any other epigenetic agent.
EBV methylation analysis performed in vitro and in vivo demon-
strated that decitabine results in global hypomethylation across
key latency promoters, including LMP1 and Cp, the promoter re-
sponsible for latency III EBNA expression, suggesting that hypo-
methylation of these promoters can release cells from latency I.
Collectively, this work demonstrates a crucial role for viral meth-
ylation inmaintenance of latency in BL. Prior studies have evaluated
5-azacytidine in the Rael cell line and observed expression of Cp
promoter transcripts.20,36 Here, we show that short-course, low-dose
decitabine can derepress the latency I pattern across a panel of BL
cells in vitro and in vivo and that the effect is durable long after
removal of drug, suggesting that this could be a rational therapeutic
modality to induce latency III.

A crucial unanswered question is why only a portion of EBV-
infected cells convert to latency III after treatment with hypo-
methylating agents. One possibility is that cells must be exposed
to drug at a specific point in the cell cycle to allow integration of
decitabine into viral DNA. Another is that some virions are in-
herently resistant to latency switch or activate compensatory
mechanisms to maintain the restricted state. Since partial in-
duction of latency II/III may select for resistant latency I cells, it
will be important to understand the percentage induction in
patient tumors. In addition, further studies are needed to identify
genetic or epigenetic factors required for sustaining deep la-
tency across cell populations, as this may provide additional or
alternative approaches whereby these tumors can be rendered
targetable by the immune system. Despite partial induction, our
work provides proof-of-principle that activation of immunogenic
viral antigens can render tumor cells sensitive to T-cell lysis
in vitro and result in T-cell homing to the tumor in vivo.

We observed trafficking of EBV-CTLs to latency I BL tumors
in vivo, which only occurred in the setting of pretreatment with
decitabine. In previous studies, we have demonstrated that HLA
A0201–restricted EBV-CTLs selectively migrate to, expanded in,
and induce regressions of only tumors that are EBV1 and
coexpress HLA A0201.37 Given these prior findings, our ex-
periments demonstrating selective infiltrations of adoptively
transferred HLA A0201–restricted EBNA3C or LMP1-specific
T cells into decitabine-treated, but not vehicle-treated, HLA
A02011 BL xenografts provide evidence that the EBNA3C and
LMP1 proteins induced by decitabine can be processed and their
immunogenic peptides presented by HLA A0201 in BL at levels
permitting in vivo recognition of these tumors by antigen-specific

T cells. This results in T-cell accumulation at tumor sites and the
engagement and lysis of tumor cells expressing latency II/III antigens.

Hypomethylation with decitabine may also induce nonviral
tumor-associated antigens in lymphomas, which could be tar-
geted by cytotoxic T lymphocytes.38-40 Additional studies are
needed to fully understand the spectrum of viral and nonviral
antigens that can exploited for therapeutic targeting through
induction with decitabine.

In summary, our work demonstrates that hypomethylation of
EBV1 BL induces expression of immunogenic viral antigens that
sensitizes tumors to T-cell–mediated killing. Since the induction
of latency II/III antigens occurs after low-dose, short-course
therapy with decitabine, this treatment approach followed by
EBV-specific CTLs is not likely to add significant toxicity and has
the potential to expand the spectrum of diseases that can be
treated with third-party EBV-specific cytotoxic T cells. This
therapeutic approach has implications beyond lymphomas and
could potentially be applied to other EBV-driven malignancies
with restricted latency.
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