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Biophysical and biomolecular determination of 
cellular age in humans
Jude M. Phillip1,2,3, Pei-Hsun Wu1,2,3, Daniele M. Gilkes2,3,4, Wadsworth Williams1, 3, Shaun McGovern1, 3, 
Jena Daya1, 3, Jonathan Chen5, Ivie Aifuwa1,2,3, Jerry S. H. Lee1, 6, Rong Fan5, Jeremy Walston7 and  
Denis Wirtz1,2,3,4, 8*

Ageing research has focused either on assessing organ- and tissue-based changes, such as lung capacity and cardiac func-
tion, or on changes at the molecular scale such as gene expression, epigenetic modifications and metabolism. Here, by using a 
cohort of 32 samples of primary dermal fibroblasts collected from individuals between 2 and 96 years of age, we show that the 
degradation of functional cellular biophysical features—including cell mechanics, traction strength, morphology and migratory 
potential—and associated descriptors of cellular heterogeneity predict cellular age with higher accuracy than conventional 
biomolecular markers. We also demonstrate the use of high-throughput single-cell technologies, together with a deterministic 
model based on cellular features, to compute the cellular age of apparently healthy males and females, and to explore these 
relationships in cells from individuals with Werner syndrome and Hutchinson–Gilford progeria syndrome, two rare genetic con-
ditions that result in phenotypes that show aspects of premature ageing. Our findings suggest that the quantification of cellular 
age may be used to stratify individuals on the basis of cellular phenotypes and serve as a biological proxy of healthspan.

Ageing is a multifaceted, temporal process of functional dete-
rioration and progressive decline across multiple organs 
and tissues1,2. These changes arise in part from the pro-

gressive accumulation of cellular damage and tissue dysfunction1, 
which results in pathophysiological phenotypic transformations. 
In humans, biological age is an important risk factor for numerous 
pathologies and chronic disease states, many of which negatively 
impact human healthspan and survival2,3. Moreover, many diseases 
that were considered disparate in the fundamental mechanisms of 
their progression have more recently been understood to be con-
nected through ageing1,4. Recent developments in geroscience—the 
study of how biological ageing relates to chronic disease manifes-
tation and healthspan—have prompted efforts to develop methods 
to determine the biological age of individuals, with the hope that 
resulting correlates will help facilitate interventions that could delay 
the onset of chronic age-related diseases2,4–7. Here biological age 
is defined as the ongoing longitudinal changes that determine the 
functional healthspan and survival of individuals, typically mea-
sured at the clinical level.

For decades, ageing research has been primarily focused on the 
progressive changes that occur at either the molecular scale, such 
as changes in genetic, epigenetic and metabolic states, or at larger 
tissue-level scales, such as changes in muscle physiology and car-
diac function. Paradoxically, changes at the intermediate length 
scales of cells themselves, which we term here as biophysical prop-
erties, have been understudied. Importantly, age-related biophysical 
changes may well drive many observed progressive dysfunctional 

tissue changes8. Multivariate determination of biological age at the 
clinical level (patient scale) via measures such as total cholesterol, 
mean arterial pressure, lung capacity and grip strength, provide a 
robust solution to assess the biological age in humans2. However, 
these changes tend to be secondary to changes in the cells them-
selves, thus advocating the value of cell-based technologies to assess 
biological age9,10.

Dysfunctions that resonate at the cellular level often have pro-
found effects on the functional decline of organisms, and further-
more enhance their susceptibility to various pathologies, including 
cancer, cardiovascular disease and frailty11–13. Hence, the integra-
tive nature of cells and tissues captured in biophysical cellular mea-
surements, cell mechanics, cell migration, cell morphology and 
so on, may better capture a variety of perturbations in underlying 
molecular networks that foster ensemble effects in gross cellular 
behaviour and properties. Indeed, large differences in gene expres-
sion or epigenetic profiles of isogenic individual cells can lead to 
similar properties14 (that is, similar cell motility or morphology), 
while highly similar proteomic profiles can lead to significantly 
different overall cell properties due, for instance, to dynamic, sto-
chastic differences in protein location within the cells (non-mea-
surable) or subtle differences in phosphorylation status. Hence 
instead of only profiling the molecular changes of cells, either in 
bulk or at the single-cell level, here we comprehensively assess both 
the molecular and cellular functions themselves, by way of cellular 
biophysical characteristics, considered here as ‘integrators’ of these 
molecular differences.
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We hypothesize that specific biophysical features encoded in cells 
can determine the ‘cellular biological age’, ultimately shedding light 
on the ageing process, and its role in the overall functional decline, 
and the development of chronic disease states in older adults. 
Furthermore, because cellular biophysics represents the ensemble 
orchestration of many molecular inputs, biophysical features may 
predict the cellular biological age with more accuracy relative to 
biomolecular features. To preserve information about cell-to-cell 
variation and its potential role in ageing, and to provide an unbiased 
comparison, both biophysical and conventional biomolecular char-
acteristics of hundreds of cells were assessed (most at the single-cell 
level), and the contribution of heterogeneity to the cellular ageing of 
apparently healthy individuals and those with ‘accelerated/prema-
ture ageing’ disorders was determined.

Results
To decipher key cellular properties that undergo significant changes 
with increasing age1,15,16, we procured a panel of primary human 
dermal fibroblasts from 32 individuals ranging in chronological age 
from 2 to 96 years old, from the Coriell Institute’s Biobank reposi-
tory (Supplementary Dataset 1, Replicative history; Supplementary 
Fig. 4b,c and Supplementary Table 1). Next, we probed key bio-
physical8 and biomolecular 1 characteristics of the cells for direct 
comparisons within this donor cohort. Taking this comprehen-
sive, single-cell-based approach, donor cells were subjected to four 
classes of biophysical measurements, that is, cell motility (single- 
and multi-cell), cell mechanics (particle tracking microrheol-
ogy), cellular traction strength (traction-force microscopy) and 
cell and nuclear morphology (high throughput cell phenotyping, 
HTCP), and five classes of biomolecular measurements, that is,  
adenosine triphosphate (ATP) content, cellular secretions, DNA 
damage response (DDR), nuclear organization, and cytoskeletal 
content and organization.

Cellular biophysics as a hallmark of ageing. Molecular investiga-
tions have dominated ageing research with few studies focused on 
possible changes in cellular biophysics. Often, molecular changes 
lead to changes in cell functions, and in particular changes in 
the biophysical properties of cells, which require the orchestra-
tion and integration of multiple signalling pathways involving a 
myriad of molecules and proteins. Here, we conducted a series of  
biophysical measurements on a panel of apparently healthy donor 
samples (Fig. 1).

Since cell migration and coordination of cellular movements play 
critical roles in healthy tissue and organ physiology17, we assessed 
the migratory propensities of dermal fibroblasts at both the single-
cell18,19 and multicellular levels. Results indicated that there was not 
only a modest decrease in the cell speed and the distance explored 
by individual cells, but also a decrease in the directional persis-
tence and anisotropy of cell movements (Fig. 1 and Supplementary  
Fig. 1b–j). Further analysis of these migratory trajectories using the 
anisotropic persistent random walk model19,20 also suggest that the 
cellular migratory patterns of cells from young donors, compared 
with those from older donors, may follow this anisotropic model 
more closely than the classic persistent random walk model. This is 
revealed and explained by properties such as the probability density 
functions of cellular displacements, the autocorrelation function, 
angular velocities and the angular displacements as a function of 
time lag (Supplementary Fig. 1d–j). This decline in migratory per-
sistence was similarly manifested at the multicellular level, resulting 
in a decreased rate of scratch wound closure and a correspond-
ing increase in wound half-life with increasing age (Fig.  1b and 
Supplementary Fig. 1a), indicating an inverse relationship between 
cellular migratory coordination and age.

Cells exert pushing and pulling forces on surrounding cells and 
their underlying substrates to facilitate many cellular functions, 

including their migration and extracellular matrix remodelling21,22. 
To determine the magnitude of mechanical (traction) stresses 
exerted by individual cells with respect to age, we used traction force 
microscopy to determine and thereby calculate the vector displace-
ments of fluorescent bead markers embedded within the polyacryl-
amide gel in the local region directly beneath migratory cells23,24 (see 
Methods). Interestingly, cells displayed an increase in total cellular 
traction stresses with increasing age, as measured by the summed 
displacement of all fluorescent bead markers underneath the cells of 
interest. In addition, the index of stress disproportionality—defined 
here as the vector distance between the geometric centroid of the 
cells of interest and its corresponding stress centroid, termed stress 
anisotropy—indicated that cells from elderly donors displayed 
increased stress disproportionality relative to young donors (for 
details see Methods and Fig.  1c). Collectively, these results indi-
cate that, in addition to the observed increase in cellular traction 
stresses observed for older-donor samples, there was an associated 
increase in the disproportionality and localization of cellular trac-
tion stresses within the cells.

A multitude of cellular and subcellular processes critically 
depend on the mechanical deformability of the cytoplasm11, from 
the regulation of genetic material25 to the polarization and move-
ments of cells26. To determine the association between age and 
cell mechanics, we used particle-tracking microrheology to probe 
the changes in cytoplasmic viscoelasticity and deformability27,28. 
Cells derived from older adult donors tended to be stiffer (or less 
deformable) relative to cells derived from young donors (Fig. 1d). 
This increased cytoplasmic stiffness observed with increased age, 
measured here as the reduction in the mean squared displace-
ments of submicrometre particles lodged within the cytoplasm (see 
Methods), has been shown to be largely due to increases in F-actin 
content and bundling11,29,30 (Fig. 2e).

To further assess age-associated biophysical changes, we evalu-
ated the cellular and nuclear morphologies of cells by utilizing 
HTCP31–36. In agreement with published results, cell and nuclear 
size increased with age37, and the cells displayed progressively more 
irregularities in shape (Fig. 1e and Supplementary Fig. 2). To pro-
vide a comprehensive quantitative handle on these observations,  
we computed a list of morphological descriptors to better describe 
the complex shapes, some of which yielded strong correlations  
with age (see Methods and Supplementary Dataset 1, Parameter 
descriptions and 1D age correlations).

To decipher the fundamental association between age and cellu-
lar biophysical properties, we normalized parameters on the basis 
of their z score and assessed global trends to define a biophysical 
signature of cellular ageing (Fig.  1f and Supplementary Fig. 3a). 
Unsupervised hierarchical clustering analysis of the average corre-
lation distances among features revealed seven dominant clusters 
within the 70 biophysical properties assessed in our experiments. 
Furthermore, global correlation analysis of the distributions of 
each parameter’s age-correlation magnitude showed (Fig.  1g) 
that ~50% of the biophysical parameters had absolute Pearson 
correlation coefficients (ρ) above 0.50, with the highest being 
the anisotropy of motility (ρ =  0.97; Supplementary Dataset 1,  
1D age correlations).

Age-altered biomolecular characteristics. As a means to directly 
compare the properties and magnitudes of our ageing trends with 
previously published data, we conducted a series of benchmark bio-
molecular experiments, many of which are considered hallmarks 
of ageing1. Consistent with previous mitochondrial studies, our 
results showed a significant linear decrease in intracellular ATP 
content with increasing age (ρ =  − 0.64; Fig. 2a)1,38–40. Prompted by 
the association between protein secretion levels and cellular ener-
getics41, we next determined whether ageing affected the compo-
sition and amount of secreted molecules by utilizing a recently 
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Figure 1 | Changes in cell biophysics: a hallmark of ageing. a–e, Biophysical assays used in the study and associated trends as a function of age. a, Single-
cell motility measures cell movements on two-dimensional substrates as a function of time (n =  2; average of 115 single cells per sample). Left: Traces of 
cell motility paths for samples from two individuals aged 3 and 92 years old (A03 and A92). Middle: Total path for all the cells in each of these samples. 
Right: Scatter plots of the directional anisotropy (top) and persistence (time; bottom). All error bars in a–e represent the s.e.m. and the lines denote the 
best fit. The colour of each plot point indicates the sample to which it corresponds (see top of f, A02 to A92). b, Scratch wound assessment measures 
the multicellular movements of cells to close a void (or wound; boundaries marked in green) made in a confluent monolayer of cells (n =  2; 10 images 
per condition). c, Cellular traction strength measures the stresses exerted by individual cells seeded on a deformable polyacrylamide (8 kPa) substrate 
containing fluorescent bead markers, cell stresses are quantified by the degree of distortion of the underlying fluorescent bead-array (n =  2; 15–25 cells 
per condition). d, Intracellular microrheology measures the degree of cytoplasmic deformability and the viscoelastic properties of the cell (n =  3; ~3,597 
particles across 9 samples). Panels 1, 2, and 3 denote the trajectories of nanoparticles embedded in the cytoplasm. MSD-1s and MSD-10s are the mean 
squared displacements of the nanoparticles after 1 and 10 s, respectively. e, Cellular and nuclear morphology measurements generated by the delineation 
of cell and nuclear boundaries on the basis of corresponding fluorescently stained cells (n =  3; 300–700 single cells per in-plate technical replicate; 
2 technical replicates per sample, per trial). f, Heat map illustrating how the cellular biophysical features extracted per sample group with age; each 
column denotes an individual age-dependent sample and each row denotes a single biophysical parameter normalized on the basis of the z score. Using 
unsupervised hierarchical clustering analysis; the cellular features were clustered and reordered. The dendrogram on the left depicts the higher-order 
association and natural groupings that exist within the dataset. Colour-coded branches of the dendrogram illustrate eight distinct clusters in the dataset, 
which are based on the correlation distance among parameters. The heat map key on the left, labelled κ, denotes the colour-coded parameters on the 
basis of the assays from which the parameters were extracted. The heat map key on the right, labelled ρ, denotes the Pearson correlation coefficients for 
all measured parameters. g, Correlation analysis data showing the distribution of Pearson correlation coefficients stratified as a function of the correlation 
magnitude and the biophysical feature set. The red trend line shows the overall frequency of correlation coefficients independent of the specified 
biophysical feature set, with grey trend lines delineating the correlation distribution for biomolecular features.
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developed and well validated high-throughput single-cell secretion 
microchip technology42. Cellular secretion profiles revealed that, of 
the 23 proteins probed, interleukin 6, a proinflammatory cytokine, 
surfaced as a key protein exhibiting a significant correlation with 
age (ρ =  0.52; Fig. 2b). To further validate this result we compared it 
with previously published data42,43 and found that there was agree-
ment (Supplementary Fig. 4a).

Next, we investigated the effects of age on DDR using 
HTCP31,34,44,45. We analysed the phosphorylation of histone 2a at  
Ser 139 (γ H2AX) content, as well as the intranuclear localization 
of the γ H2AX signal, which are both associated with the degree 
of DNA breakage and the number of γ H2AX foci34 (see Methods 

and the parameter descriptions in Supplementary Dataset 1). The 
results indicated that after a 1 h treatment with the DNA-damaging 
agent bleomycin (10 μ g ml−1) and subsequent wash out and recovery  
for 1 h, there was an age-dependent response (Fig. 2c) in the intra-
nuclear γ H2AX content and signal localization (coefficient of 
variation (c.v.) for the γ H2AX intensity), indicating an inverse rela-
tionship between the DDR rate and age46.

To determine whether this change in DDR rate could be related 
to changes in the organization of DNA and chromatin in the 
nucleus, we again used HTCP to evaluate nuclear texture features 
as a proxy for chromatin arrangement and compaction associated 
with heterochromatic (high intranuclear signal) and euchromatic  
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Figure 2 | Comprehensive biomolecular assessment of age-dependent cellular phenotypes. a–e, Biomolecular assays used in the present study and 
associated trends as a function of age. For all scatter plots (right panels), the error bars represent the s.e.m. and the lines denote the best fit. The colour 
of each point indicates the sample to which it corresponds (see top of f, A02 to A92; samples from individuals aged 2 to 92). a, Left: Schematic of how 
luminescence readings are obtained when a probe binds an ATP substrate. Right: Cellular ATP production as a function of age (n =  2; 4 wells per sample). 
b, Secretion profiles of 23 proteins measured using high-throughput secretome-profiling microchip technology (sample protein blot shown on left), with 
interleukin 6 being the top age correlate (n =  2; 20,000 cells per well). c, DDR after bleomycin exposure, as measured by the amount, organization and 
localization of intranuclear γ H2AX foci (n =  3; 300–700 individual cells per in-plate technical replicate; 2 technical replicates per sample, per trial; same 
for DDR (c), nuclear organization (d) and F-actin content (e); representative fluorescence micrographs on left). d, Nuclear organization as measured by 
texture patterns of DNA and chromatin from Hoechst 33342 staining. e, F-actin content and organization per cell. f, Heat map illustrating all the measured 
age-dependent biomolecular features; each column denotes an individual and each row denotes a single biomolecular parameter. Each parameter is 
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The heat map key on left, labelled κ, denotes the colour-coded parameters on the basis of the biomolecular assays used in the study. The heat map key 
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frequency of correlation coefficients independent of the specified biomolecular feature set.
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(low intranuclear signal) regions. The results indicated a global 
reorganization of nuclear material and an increase in the fre-
quency of high-intensity regions, as represented by para meters 
such as nuclear intensity skewness and nuclear intensity entropy, 
which exhibited correlations of 0.58 and 0.37, respectively (Fig. 2d; 
for details, see Methods and Supplementary Dataset 1, Parameter 
descriptions). These shifts suggest a directly proportional relation-
ship between heterochromatin (transcriptionally repressed regions) 
and age; a similar relationship was found previously using a differ-
ent method47.

Key cellular processes depend on the content and organization 
of the cytoskeleton11. Recent studies have suggested that through 
mechanotransductive mechanisms involving the cytoskeleton, cells 
can modulate their chromosomal organization through physical 
forces exerted by the dynamics of cytoskeletal proteins, primar-
ily through F-actin fibres48–50. Here, we observed that both F-actin 
content (ρ =  0.33) and the degree of fibre bundling (ρ =  0.38; deter-
mined as the F-actin intensity skewness) showed a direct propor-
tional association with increasing age (Fig.  2e). These findings 
support a cellular framework of bidirectional interactions between 
the regulated dynamics of the cytoskeleton and the response of tran-
scriptionally defined DNA and chromatin25,51.

Further, we asked whether the above 49 biomolecular features 
exhibited higher-order associations that defined a biomolecular 
signature of cellular ageing (Fig.  2f  and Supplementary Fig. 3b). 
Again, using unsupervised hierarchical clustering of the aver-
age correlation distances of the z-score normalized features, we  
found that there were five dominant clusters in the dataset, delin-
eating mathematically similar cellular feature patterns. Correlation 
analysis using the absolute values of the Pearson correlation coef-
ficients, based on feature sets (Fig.  2g) showed that intracellular 

ATP content had the highest absolute value for correlation with 
age (ρ =  0.64), with 15% of the 46 biomolecular parameters hav-
ing absolute values for age correlation above 0.50 (Supplementary 
Dataset 1, 1D age correlations).

Cellular heterogeneity as another hallmark of ageing. Recent evi-
dence indicates that genetically identical cell populations can give 
rise to diverse cellular phenotypes42,52,53. Here, our results suggest 
that cell-to-cell variation may play an important role in the ageing 
process. Since a large fraction of the parameters quantified previ-
ously (Figs 1 and 2) are measured at the single-cell level, we asked 
whether cell-to-cell variation in these biophysical and biomolecular 
features helped define the cellular age phenotype. Results indicated 
that there were significant changes in cellular heterogeneity with 
age, as assessed by the magnitude of the c.v. for both biophysical 
(Fig.  3a and Supplementary Fig. 3c) and biomolecular features 
(Fig. 3b and Supplementary Fig. 3d). Using clustering analysis, we 
determined interrelations between the 92 c.v.s to probe the natural 
grouping comprising both datasets. Interestingly, feature-depen-
dent correlative trends exhibited both positive and negative changes 
in cellular heterogeneity with increasing age; for instance, although 
there was a directly proportional relationship between the c.v.s of 
both cellular and nuclear size with age (that is, an increase in het-
erogeneity with age), the c.v.s of cellular speed and directional per-
sistence exhibited inverse relationships (decreased heterogeneity) 
with age, thus implicating the underlying functional biology and 
substantial heterogeneity in ageing (Supplementary Dataset 1, 1D 
age correlations). Global correlation analysis indicated that ~29% 
and ~23% of the 70 biophysical and 22 biomolecular c.v.s, respec-
tively, exhibited absolute Pearson correlation coefficients above 0.50 
(Fig. 3c,d). Together, our results suggest that cellular heterogeneity 
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is an important hallmark of ageing, and that it can be measured 
to help determine the extent of age-related deterioration of cellular 
phenotypes.

Biophysical signatures display stronger association with cellu-
lar age. Next, we asked the following questions: (1) can we deter-
mine a cellular age for donors based solely on the quantification 
of cellular features, both univariate and bivariate, and (2) which 
parameters exhibit enhanced quantitative age associations. Due to 
the comprehensive nature of our study, exploring 208 parameters 
in total (116 mean-valued biomolecular and biophysical param-
eters +  92 c.v.s) across a 90 yr age range, we adopted an unbiased 
and agnostic approach to further determine key age-prediction 
parameters. First, using a univariate approach, we rank-ordered 
all 208 measured parameters; of these, a large fraction of the top 
correlates were descriptors of the biophysical features, with the 
highest biomolecular parameter (ATP content) ranking 29th 
overall (Fig.  4a and Supplementary Dataset 1, 1D age correla-
tions). Moreover, many of the top-ten univariate parameters were 
descriptors of cellular and nuclear morphology and single-cell 

motility, consisting of both mean-value parameters and c.v.s, with 
the top univariate predictor (anisotropy of cell motility) showing 
an average fit error of 8 yr relative to the chronological age (see 
Methods and Fig. 4b).

These results, established in the training set, were further vali-
dated by the inclusion of additional donor samples (Fig. 4b, right). 
This validation set confirmed the robust and superior predictive 
power of biophysical features relative to biomolecular features. In 
addition, there were strong similarities observed in the distributions 
of correlation coefficients for both the training and validation sets 
(Supplementary Fig. 6a).

Although univariate analysis revealed the ability to determine 
the age of the donors at the cellular level, the magnitude of the fit 
error between the first and tenth rank-ordered parameters, ranging 
from 8 to 21 yr, limits its utility. To further enhance the predictive 
power on the basis of the cellular feature space, we utilized a bivari-
ate approach using a generalized linear model (GLM) of the follow-
ing general form:

β=E a y X( ) ( ) (1)
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Figure 4 | Univariate and bivariate age-associated parameters provide a reliable prediction of the functional age index of donors on the basis of cellular 
features. a, Plot showing correlation coefficients for all 208 parameters (mean and c.v.) stratified on the basis of feature sets for both biomolecular 
and biophysical parameters. The results indicate that the biophysical parameters constitute the top quadrant of the correlation spectrum, with the top 
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where E(a) represents the expected value of a (here, the cellular 
age), Xβ is the linear predictor of parameter β (the biophysical and 
biomolecular features) and y is the data-dependent link function 
delineating a weighted association among parameters. Following  
the GLM analysis (see Methods), we rank-ordered the pair interac-
tions on the basis of the magnitude of the correlation coefficients, 
and further separated them into three categories: biophysical–bio-
physical, biomolecular–biomolecular and biomolecular–biophysi-
cal. The best pair predictors consisting of two parameters from 
separate cluster groups, on the basis of the hierarchical clustering, 
were used to determine the cellular age (Supplementary Dataset 1, 
Pair predictions, and Supplementary Fig. 6c). This was done with 
the rationale that parameters from different cluster groups prob-
ably provide non-overlapping information, thereby strengthening 
the prediction (probably due to the orthogonality of parameters). 
To further validate this notion, correlation analyses were computed 
for all pair associations on the basis of the GLM (208 parameters 
amounting to 21,736 combinations), and a 2 ×  2 correlation topog-
raphy map was generated (Supplementary Fig. 6b).

This analysis indicated that the combination of two biophysi-
cal parameters (Fig.  4c) displayed stronger predictive power and 
a lower error compared with using two biomolecular parameters 
(Fig. 4d), and the combination of one biomolecular and one bio-
physical parameter had the same predictive power and error as the 
two biophysical parameters (Fig. 4e). Taking the top five bivariate 
predictors of cellular biological age in each category, and compar-
ing the first and fifth best predictors demonstrated that the com-
bination of two biophysical parameters had an average predictive 
error, ranging from 6 to 7 yr; the combinations of two biomolecular 
parameters had a mean error ranging from 10 to 13 yr (comparable 
to methylation age in dermal fibroblasts6); and the combination of 
one biomolecular and one biophysical parameters had a mean error 
ranging from 6 to 8 yr.

To further validate these results, we conducted the analysis on 
the five samples in our validation set. The results revealed high  
consistency, which was further confirmed via an iterative leave-one-out  
validation method using all 14 samples (training and validation 
samples), thus providing an unbiased estimation of the predictive 
accuracy with regards to age (Table 1). Furthermore, the preserved 
high predictive performance observed with the inclusion of the  
validation samples suggest that the system is robust and does not 
overreact to minor fluctuations suggesting a low potential for the 
model being over fitted.

Having demonstrated that we can robustly determine  
the cellular age of donors, we next assessed which measure-
ments would be the simplest and most time- and cost-effective 
to conduct, while maintaining a high degree of predictive power 
(Supplementary Table 2). We determined that morphology-based 
HTCP measurements provide an inexpensive and time-efficient 
method that can easily be extended to both preclinical and clinical 
settings, as they require neither live specimens nor sophisticated 
measurements and equipment. Furthermore, the use of bivari-
ate morphology-based features alone predicted the cellular age 
robustly, with high accuracy, with the best prediction pair having 
a mean unbiased prediction error from leave-one-out analysis of 
5.9 yr (Table 2).

Remarkably, this prediction using only cell-morphology-based 
parameters, requires ~300 cells, which can easily be attained from a 
3 mm skin punch biopsy, and the optimized processing time from 
sample preparation to results is on the order of 24 h.

Age prediction reveals distinct cellular ageing states. Using 
cellular and nuclear morphological features, we next evaluated 
whether the observed trends in cross-sectional ageing in the train-
ing set remained consistent for additional cross-sectional validation  
samples, longitudinal ageing samples and samples from disease  

Table 1 | Correlations and errors for the top five pair predictors per testing category for both training and cross-sectional ageing 
validation datasets.

Training Validation Leave one out

Class of parameter 1 Parameter 1 Class of parameter 2 Parameter 2 Error ρ  Error ρ  Error ρ

Biophysical–
biophysical

Morphology Nuclear size Motility Anisotropy 5.9 0.97 2.7 0.99 7.5 0.95

Morphology Cell roughness 
peak

Morphology Nuclear size 6.7 0.96 1.2 0.99 5.9 0.97

Morphology Cell perimeter Morphology Nuclear size 6.8 0.95 2.8 0.99 8.3 0.96

Morphology Cell roughness 
mode

Motility Anisotropy 6.9 0.97 3.7 0.99 9.5 0.94

Morphology Cell curvature 
peak

Morphology Nuclear size 7.0 0.95 2.8 0.99 8.3 0.95

Biomolecular–
biomolecular

Nuclear organization Nuclear skewness DDR yH2AX c.v. 12.5 0.87 5.6 0.97 17.8 0.78

DDR yH2AX c.v. F-actin F-actin content 12.8 0.87 6.3 0.97 13.7 0.85

DDR yH2AX c.v. Nuclear organization Nuclear 
skewness

15.3 0.84 6.2 0.98 16.8 0.80

Nuclear organization Nuclear kurtosis DDR yH2AX c.v. 17.4 0.69 5.5 0.98 19.1 0.69

DDR     yH2AX c.v. F-actin F-actin 
skewness

17.4 0.67 3.5 0.99 19.3 0.70

Biophysical–
biomolecular

DDR yH2AX entropy Morphology Nuclear size 5.9 0.97 3.4 0.99 7.0 0.96

DDR yH2AX content Motility Anisotropy 6.1 0.97 9.7 0.93 11.5 0.91

DDR yH2AX content Morphology Nuclear size 6.7 0.97 3.4 0.99 8.6 0.94

DDR yH2AX entropy Morphology Nuclear size 7.2 0.95 4.1 0.99 7.0 0.95

DDR yH2AX content Morphology Nuclear size 8.5 0.95 4.0 0.99 7.8 0.94
Bold parameters represent single-cell diversity/heterogeneity parameters.
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models, often referred to as ‘accelerated/premature ageing’. Using the 
top morphological pair predictors, the results indicated that analysis 
of 32 samples not only displayed consistency in the computed trends 
(Fig.  5a), but also revealed outliers. Moreover, evaluating the age 
differential (difference between the predicted cellular age and the 
chronological age) versus the chronological age (Fig. 5b), revealed 
that the samples fell into three distinct groups, which we refer to as 
‘expected ageing’, ‘accelerated/premature ageing’ and ‘delayed age-
ing’. To maintain the consistency and statistical validity of the analy-
sis, samples were considered to be in different groups if their age 
differential was more than twice the magnitude of the average error 
(an error of 6 yr implies a 12 yr threshold), from the weighted group 
centroid, delineated by coloured boundary shadings in Fig. 5b.  
Although the accelerated/premature ageing category was primar-
ily comprised of the samples from individuals with Hutchinson–
Gilford progeria syndrome (HGPS) and Werner syndrome, it also 
included a sample from an apparently healthy individual. In addi-
tion, two out of the three Werner syndrome samples were located 
outside the proximity of the accelerated/premature ageing group.

Discussion
Previous studies have demonstrated the close association between 
changes in cellular phenotypes and functional deterioration with 
age1,2,5,6. To better understand the nature and responses of complex 
living systems, the development of integrated cell-based approaches 
to study health and disease, as they relate to age, is essential4,54. To the 
best of our knowledge, this is the first study of its kind where both 
biophysical and biomolecular cell properties were comprehensively 
assessed within the same sample cohort, thus allowing for head-to-
head comparison between these two types of assessment. Here, we 
utilize a robust approach to identify key age-associated phenotypic 
changes in an effort to improve our understanding on how cellular 
biophysical and biomolecular features define the emergent patterns 
of cellular physiology observed in human ageing. Using 208 cellular 
features, we determined the cellular age of individuals, measured 
and interpreted here as the ensemble functional outlook based on 
biophysical features of an individual’s cells. Several univariate and 
multivariate methodologies can determine the ‘biological age’ of 
individuals, mainly at the clinical and molecular levels, such as the 
United States National Health and Nutrition Survey method2, and 
the Horvath method to compute the methylation-age, based on the 
methylation status at various pre-determined loci6.

Measuring and predicting biological age is controversial2, partly 
because a definitive ‘ground truth’ does not exist, and there is no 
absolute metric for what an individual’s cellular physiology and their 

phenotypic outlook should be as a function of their chronological age. 
A solution to help define the phenotypic spectrum of healthy ageing 
is by using either (1) cross-sectional donor samples spanning an age 
range of interest or (2) prospective longitudinal sampling of many 
individuals as they age within a defined age range. Subsequently, the 
samples can be interrogated to define the global relationship between 
their chronological age and their predicted cellular age, resulting in 
an age trajectory that is based on population statistics.

In addition, one can ask if the ageing process harbours some sem-
blance of ergodic behaviour, and whether sampling 20 individuals 
between the ages of 2 and 90 yields a similar result to sampling one 
individual 20 times between ages 2 and 90. In our study we com-
pared longitudinal ageing and cross-sectional ageing samples, and 
the results suggested that there are similarities between sampling 
an individual over a defined age range, and population sampling of 
many individuals across similar age ranges, both using predictions 
based on overall cellular biophysical properties and morphology- 
based properties. The rates of ageing—calculated based on the 
slopes—exhibit different progressions per individual (Fig.  5a and 
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Figure 5 | Cellular biological age prediction on the basis of morphological 
features. a, Scatter plot showing the chronological age versus the predicted 
cellular biological age for 32 donors divided into five categories: training 
dataset, cross-sectional validation datasets, longitudinal validation dataset, 
and Werner syndrome and Hutchinson–Gilford progeria syndrome (HGPS) 
datasets. b, Scatter plot showing the chronological age versus the age 
differential; age differential is defined as the difference in years between 
the chronological age (Ac) and the predicted biological age (Abp). The 
results reveal that samples cluster into three primary groups: expected 
ageing (Ac ≈  Abp), accelerated/premature ageing (Ac <  Abp) and delayed 
ageing (Ac >  Abp).

Table 2 | Correlations and errors for the top-ten pair predictors based solely on morphological features, for the training,  
cross-sectional ageing validation and longitudinal validation datasets.

Training Validation Leave one out Longitudinal

Parameter 1 Parameter 2 Error ρ Error ρ Error ρ  Error ρ

Cell roughness peak Nuclear size 6.7 0.96 1.2 0.99 5.9 0.97 2.0 0.95

Cell perimeter Nuclear size 6.8 0.95 2.8 0.99 8.3 0.96 2.5 0.93

Cell curvature peak Nuclear size 7.0 0.95 2.8 0.99 8.3 0.96 2.5 0.93

Cell short axis length Nuclear size 8.1 0.92 2.8 0.99 7.6 0.94 2.2 0.94

Cell curvature c.v. Nuclear size 8.1 0.94 3.4 0.99 8.8 0.93 2.1 0.94

Nuclear long axis length Nuclear size 8.2 0.94 2.3 0.99 8.1 0.94 2.2 0.94

Cell short axis length Nuclear size 8.2 0.94 3.6 0.99 8.9 0.93 1.8 0.97

Cell equivalent diameter Nuclear size 8.3 0.93 2.6 0.99 7.0 0.95 1.9 0.96

Nuclear perimeter Nuclear size 8.6 0.93 1.2 0.99 6.9 0.95 2.4 0.93

Nuclear curvature kurtosis Nuclear size 8.7 0.93 1.8 0.99 7.5 0.95 2.2 0.95
Bold parameters represent single-cell diversity/heterogeneity parameters
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Supplementary Fig. 7a–d), which may result from differences stem-
ming from the cyclic feedback interactions among specific indi-
vidual traits such as genetics, diet and lifestyle55. Comparing the 
ensemble cross-sectional rate of ageing within the same age range 
using the longitudinal ageing samples revealed a similar slope, 
suggesting that while there may be ergodic-like behaviour at the  
ensemble level, this same relation does not seem apparent at the 
individual level; however, further studies using a larger comprehen-
sive cohort would better elucidate this point.

The notion that fundamental properties of human biologi-
cal ageing (regardless of their chronological age) can be slowed or 
reversed has fascinated humankind for millennia. The development 
of these integrated technologies to study ageing and probe bio-
physical decline may enable progressive strides towards uncovering 
precursors to chronic disease states and differential effectual demo-
graphic inputs such as gender, and its effects on the ageing process. 
It was recently postulated that inherent differences exist between 
males and females during the ageing process56,57. Using our ageing 
cohort, we investigated whether these male–female differences were 
apparent as a function of our cellular age. The results suggest a slight 
deviation in the ageing patterns observed when using the top pair 
predictors for both biophysical (Supplementary Fig. 7e) and mor-
phology-based (Supplementary Fig. 7f) parameters. Interestingly, 
the differential age relative to their chronological age initially pre-
sented as low for both males and females, with a biphasic devia-
tion trend observed for female donors between late adolescence 
and early adulthood, followed by a decrease at post-menopausal age 
(~70 years old) to levels comparable to that of males. Interestingly, 
the majority of female samples assessed show a reduced cellular 
age relative to their chronological age, suggesting that on average 
females exhibit slower cellular ageing. Although the rational design 
of more in depth studies is needed, this result supports the notion 
of inherent male–female differences as a function of age, which 
is supported by population data demonstrating consistent earlier 
mortality for men compared with women, even after adjustment for 
potential confounders58–61.

This study presents the utility of a technology that could poten-
tially address (1) the proximal causes of cellular ageing, (2) the 
mechanisms and common components relating to how ageing 
enables disease progression, and vice versa, and (3) the testing of 
a broad set of interventional strategies both in humans and model 
organisms. To hone in on these implications, we used the top mor-
phological bivariate prediction pair to determine the cellular/func-
tional age of individuals as a function of both healthy ageing and 
disease. With a cohort of 32 samples—17 samples from 17 appar-
ently healthy individuals spanning ages 2 to 96 years, 5 longitudinal 
ageing samples from two apparently healthy individuals, 6 HGPS 
samples and 3 Werner syndrome samples—the results demon-
strated a clear delineation into three subgroups: (1) expected age-
ing (chronological  age  ≈   cellular  age), (2) accelerated/premature 
ageing (cellular  age  >   chronological  age) and (3) delayed ageing 
(cellular age <  chronological age) (Fig. 5b). Although implement-
ing a more extensive multivariate approach (three-feature or four-
feature prediction, and so on) will most probably yield better 
prediction accuracies, we reasoned that strong prediction power 
with minimal input variables—as shown for bivariate analysis—
was sufficient.

Further, the development and validation of this robust predictive 
model to determine the cellular age of donors, which holds con-
sistent for both the training and validation sets, suggest that it is 
not over fitted. With this, we asked whether we are predicting the 
chronological age using biological features, or are we predicting a 
‘biological age’ on the basis of true cellular functions at the cellular 
level. Here we present three lines of evidence to suggest that we are 
probably predicting a biological/functional age at the cellular level: 
(1) the prediction pair trends that are established in the training set 

also hold true for the validation set and leave-one-out validation, (2) 
inherent cellular biological age differences observed between male 
and female donors (Supplementary Fig. 7e,f), and (3) delineation 
and stratification of samples into subgroups on the basis of health/
disease states.

These differences in ageing between males and females shown 
here fit well with emerging studies that have begun to postulate 
gender-based contributions to the ageing process8,56,57. Overall, the 
delineation of the 32 samples into the three subgroups indicates that 
we are probably predicting more than just the chronological age. 
The observation of the delayed and accelerated/premature ageing 
categories supports this point. Defining disorders such as Werner 
syndrome and HGPS as accelerated/premature ageing is controver-
sial because they result from a known mutation in the gene encod-
ing lamin A/C (LMNA) and in DNA repair pathways, rather than 
ageing per se. However, these so-called accelerated/premature age-
ing samples display certain properties close to those seen in the 
older individuals in this study.

Cellular properties change markedly with increasing age, some 
of which probably impact age-associated dysfunction and the emer-
gence of chronic disease states. Here, our study points out another 
interesting notion, that cells taken out of their normal biological 
context (within tissue) can retain key attributes that can be used 
to assess age-related perturbation. Although it has been estab-
lished that the number of senescent cells within tissues and organs 
increases with age, and that the presence of these cells does in fact 
influence the age phenotype, whether through secretions, mechan-
ics or other means10,62,63, we postulate that we are not just identify-
ing a signature of senescent cells with age. Our rationale being that 
other studies of cellular senescence have reported key changes in 
properties such as morphology, cell-cycle fractions, motility pat-
terns and secretory patterns9,64–71. Since we have taken such a com-
prehensive approach, we have assessed the morphologies, motility 
and secretory patterns of these ageing cells. In addition, the versatil-
ity of HTCP allows the robust determination of in silico fractional 
cell-cycle compositions on the basis of the cellular DNA content 
(see Methods), and thereby the ability to determine cell-cycle-
dependent morphological features31,32,34,44.

Here, we present four key lines of evidence to suggest that 
although the senescence process and its resultant cells do influences 
the ageing phenotype, and while they cannot be considered mutu-
ally exclusive, we are probably not measuring a signature of senes-
cence, but a complex interdependent age-related phenotype. The 
reasons are as follows. (1) We do not observe the synchronization of 
cells or growth arrest in the G0/G1 phase and decrease in the S-phase 
fraction, as is characteristic of many senescent cells. However, we 
do observe a consistent S-phase fractional composition of ~20% in 
all samples, based on our HTCP analysis (Supplementary Fig. 5a). 
(2) Quantification of dominant cell morphology modes across all 
samples using HTCP and visual aided morpho-phenotyping image 
recognition analyses do not identify a dominant eigen shape mode32 
characterized by a flattened, rounded morphology when evaluat-
ing the pooled boundary contours of all the assessed cells spanning 
the entire age range (Supplementary Fig. 2f). (3) Use of HTCP’s  
in silico fractionation and quantification of cellular morphology as a 
function of cell-cycle state (Supplementary Fig. 5c) showed that the 
correlative trends seen for the 52 base morphological parameters 
were conserved, independent of the cell-cycle state (Supplementary 
Fig. 5c). This further implies that the similar age-dependent correla-
tive trends regarding morphological features are indeed conserved 
in actively cycling cells.

Although studies have shown a characteristic increase in cell and 
nuclear size with age (~1.8 times across a 90 yr age range), this feature 
is also characteristic of cells transitioning from a pre-senescent to a 
senescent phenotype—however, at a greatly amplified degree (on 
average three times greater cell size based on induction of senescence  
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in WI-38 cells; see Methods and Supplementary Fig. 5d,e). (4) As 
cells progress through the cell cycle from G0/G1 to G2/M, there 
is an increase in both their cell and nuclear sizes31,32,72, meaning  
that on average G0/G1 cells tend to be smaller than those that are 
further along the cycle. Here, we have observed, that across all age-
ing samples as a function of increasing age, there is also an increase 
in cell and nuclear sizes as a function of cell-cycle progression, and 
that cells in the G0/G1 phase do not, on average, exhibit larger cell 
and nuclear sizes. To further confirm this, we artificially induced 
senescence in WI-38 fibroblast cells via DNA damage caused by 
bleomycin (see Methods), and assessed cell size as a function of cell-
cycle state in both the pre- and post-senescence samples, eight days 
after induction. We demonstrate that senescent cells in the G0/G1 
phase (and all other phases) are indeed larger when compared with 
pre-senescent cells in more advanced cell-cycle states (S and G2/M) 
(Supplementary Fig. 5e).

We have presented a robust and well-validated study providing 
evidence for the cellular age determination with potential implica-
tions for stratification based on age-related disease risk and progres-
sion; however, the size of our cohort may present a limitation. As a 
result, studies using a larger cohort of both cross-sectional and lon-
gitudinal samples would supplement our claims and enable further 
extrapolations of the results. Furthermore, studies to completely 
validate the connections between our cellular-level assessments 
and the biological ages assessed at the clinical level will help deci-
pher how these cellular changes are directly associated with ageing 
disorders. With a more comprehensive understanding of ageing at 
all three levels—biomolecular, biophysical and clinical—we will be 
able to more effectively map the mechanistic interactions that drive 
biological ageing. This could result in better predictors of healths-
pan and longevity as opposed to chronological age, thereby boost-
ing the chances of successful stratification-based interventions, and 
helping to address the question of whether therapeutics and lifestyle 
interventions will lead to significant improvements in healthspan 
and survival. Moreover, such a strategy may potentially mitigate 
defective traits that may delay the onset of dysfunctional age-related 
phenotypes such as frailty.

We postulate that with the collection of additional data points 
and further analysis in a larger cohort, there are a variety of poten-
tial applications for this approach and technology. Examples include 
the following: (1) potential uses in enhancing the efficacy of skin 
graft matching by ‘phenomapping’ (phenotype mapping)—selecting  
regions that also match in terms of cellular functional traits (deform-
ability and motility), which could improve wound healing and  
cellular/tissue resilience in those areas; (2) preclinical and progres-
sive testing of the effects of various biological agents and therapeu-
tics on a patient-specific basis; (3) cellular toxicology and biological 
efficacy screening for cosmetics and topical bioagents; (4) predict-
ing a patient’s propensity for optimal wound healing after surgery, 
and the effect of age and exposure to various biological agents (that 
is, it could help clinicians determine whether a patient is a candi-
date for surgery based on sub-optimal wound healing as a result of 
age, exposure to chemicals such as chemotherapeutics, and other  
factors that have been shown to affect how patients heal); and (5) a 
method to evaluate various age-related diseases such as frailty and 
the potential to predict the rate and trajectory of progression.

Methods
We subjected primary dermal fibroblasts, collected from individuals between  
2 and 96 years old, to a panel of biomolecular and biophysical assays, including 
cell migration, force generation, cellular mechanics, cell and nuclear morphology, 
secretion profile, ATP content, cytoskeletal organization, DDR and nuclear 
organization. 

Cell lines and culture. Human dermal fibroblasts, which were derived  
from ‘apparently healthy individuals’ as part of the Baltimore longitudinal  
study of ageing, were purchased from the Coriell Biobank Cell Repository 

(Camden, New Jersey, USA); and were cultured in high-glucose (4.5 mg ml−1) 
DMEM medium supplemented with 15% (vol/vol) fetal bovine serum  
(Hyclone) and 1% (vol/vol) penicillin–streptomycin (Sigma). All cell lines were 
maintained at 37 °C in a humidified, 5% CO2, 95% air incubator. The cells were 
passaged every three to four days at 80% confluence for a maximum of five 
passages for use in experiments. They had an average overall population doubling 
level of ~9.5, and an average overall passage number of ~7.7 (Supplementary 
Fig. 4b,c and Supplementary Dataset 1, Replicative history). The cells were 
authenticated by the supplier, Coriell, and we tested them for mycoplasma 
contamination using PCR.

Cell motility. Cells were seeded at low density (2,000 cells ml−1) onto 24-well 
tissue-culture treated plates (Corning) and allowed to adhere overnight.  
After cell attachment, the plate was mounted on a Nikon TE2000 microscope 
(Nikon) equipped with a motorized stage (Prior Scientific) and an environment 
control—to maintain physiological temperature, CO2 and humidity (Pathology 
Devices). Phase contrast images were recorded every 3 min for 20 h using  
a Cascade 1K CCD camera (Roper Scientific) with a low magnification  
10×  Plan Fluor objective (numerical aperture, 0.3; Nikon). Cell motility  
parameters were determined via the tracking of single cells (n =  2, ~50–80 cells 
per sample per trial) using image recognition software (MetaMorph/Metavue) 
as previously specified1–3. Cells that divided, went out of the frame or had long 
contact with other cells were omitted, while those that went ten continuous hours 
without meeting these exclusion criteria were used for the final analysis. Cellular 
displacements were calculated using the corresponding x and y coordinates, and 
the final motility parameters (that is, mean squared displacement, anisotropic 
index and so on) were calculated using the anisotropic persistent random walk 
model (Supplementary Fig. 1b–j) as previously specified4.

Scratch wound measurements. Cells were seeded to confluence in six-well tissue-
culture treated dishes (Corning) and allowed to adhere for 24 h. Three vertical  
and horizontal scratches were made in the confluent monolayer of cells using a 
0.1–10 μ l pipet tip, to reduce any variations that may arise due to orientation and 
boundary effects5. Subsequently, cells were washed once with PBS buffer to remove 
cellular debris and then immediately mounted on a Nikon TE2000 microscope 
(Nikon), where images were acquired. Briefly, images were recorded every 3 min 
for a total duration of 20 h, and were analysed using NIS Elements software 
(Nikon). The cell-free areas were traced every hour for the total duration of the 
movie, with n =  2 and ten technical replicate positions per sample, and with each 
position normalized to its initial cell-free area. The wound half-life was calculated 
using a two-point interpolation method per position, and the wound closure 
rates were calculated on the basis of the corresponding exponential decay kinetics 
(Supplementary Fig. 1a).

Immunofluorescence and high-throughput cell phenotyping. Dermal  
fibroblast samples were seeded at low confluence onto glass-bottom eight-
chambered tissue-culture dishes (EMD Millipore) and allowed to adhere  
for 24 h. The cells were fixed with 4% paraformaldehyde (Electron Microscopy 
Sciences) for 12 min, permeabilized with 0.1% Triton X-100 (Fisher) for 
10 min, and blocked with PBS supplemented with 1% (w/v) bovine serum 
albumin (Gemini). For the morphology, cytoskeleton, and nuclear organization 
experiments, as well as cell-cycle determination, F-actin filaments were stained 
with Alexa-Fluor-488-conjugated phalloidin (Invitrogen) and the nuclei (DNA) 
were stained with Hoechst 33342 (Sigma). For the DDR experiments, the cells  
were treated with 10 μ g ml−1 of bleomycin (EMD Millipore) for 1 h, then 
washed and allowed to recover for 1 h, and then immediately fixed with 4% 
paraformaldehyde. γ H2AX foci were stained using anti-γ H2AX mouse monoclonal 
antibodies (EMD Millipore), and subsequently counterstained with Alexa Fluor 
568 anti-mouse secondary antibodies (Invitrogen), in addition to stains for 
F-actin and nuclei. Using custom image processing software, cellular and nuclear 
morphology, as well as protein content, were quantified (mean and c.v.) via 
information generated using the boundaries extracted from the F-actin and  
nuclear channels. The protein content parameters (F-actin content, γ H2AX  
content and so on) were calculated using the intensity-based measurements  
per region of interest (after correction of non-uniformities in the intensity  
fields) within the delineated cellular and nuclear regions of interest per single  
cell; the procedure has been previously described6–11. Single cells (300–700)  
were analysed across two technical replicate wells for each of two trials (n =  2).  
The size and shape description (Supplementary Fig. 2) of single cells was  
quantified as previously described7.

Cellular stress exertion. Collagen-coated, bead-embedded polyacrylamide gels 
(stiffness, 8,000 Pa) were fabricated on 35 mm glass-bottom dishes (Mattek).  
Briefly, cells were seeded at low density and allowed to incubate and adhere 
for ~24 h, after which, the dishes were mounted on a Nikon T300 microscope 
equipped with a motorized stage and automated fluorescence capabilities, 
controlled by NIS Elements software. For each single cell imaged per sample 
(15–25 single cells per sample per trial, n =  2), an in-focus phase contrast image 
and a fluorescent image—at the corresponding bead excitation wavelength—were 
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acquired (fluorescence images of the bead array were captured with the beads 
located at the top of the polyacrylamide gel in focus to achieve the most accurate 
deformation of the gel surface by the cells). After image acquisition of the cells 
and positions of interest, the sample was washed once with PBS and the cells were 
detached using 0.25% trypsin-EDTA (Invitrogen), and incubated for ~20 min. 
Subsequently, detached cells were washed off with a PBS rinse, and positions 
that harboured the cells of interest were checked to ensure that all the cells had 
detached. Then a second fluorescent image of the bead array was acquired, and 
each set of three images per position, per sample was analysed to assess the cellular 
stresses. Using a custom MATLAB (MathWorks) script, the two fluorescence 
images were aligned using an image cross correlation algorithm, and the local bead 
displacement vectors within the traced cell region of interest were quantified.  
The quantified bead displacements (difference in a bead’s position between the 
relaxed and stressed states of the substrate) delineated the stresses exerted by the 
single cells on the substrate, and as such was used to estimate the traction stresses12.

Intracellular microrheology. Intracellular microrheology experiments were 
conducted as previously outlined13. Briefly, cells were seeded in 35 mm plastic dishes 
and allowed to adhere for 24 h. Next, adhered cells were ballistically injected with 
fluorescent 100 nm polystyrene beads (Invitrogen). Cells were washed with PBS 
and allowed to recover under physiological conditions for 4 h and then re-seeded at 
low densities in 35 mm glass-bottom dishes and allowed to attach for an additional 
24 h. Subsequently, dishes were mounted on a TE2000 microscope, equipped with a 
motorized stage and an environmental control unit and the cells were imaged (50–
100 cells per sample per trial, n =  3). The displacements of the beads (on average 
4–10 particles tracked per cell) were tracked for 30 s at high temporal and spatial 
resolution with a 60×  oil objective and analysed using custom MATLAB software.

High-throughput cellular secretion analysis. Cells (~50,000) were seeded in 
24-well tissue-culture dishes (Corning) and allowed to adhere for 16 h. Once the 
cells had attached, fresh media was added per single well, and left for 24 h under 
physiological conditions, after which, the conditioned media, containing the 
cellular secretions were collected and analysed for 23 secreted proteins of interests 
as previously described using a microfluidics-based high-throughput cell secretion 
device14 (n =  2). The results were compared with another previously reported 
ageing study to determine whether there was agreement with other studies seeking 
to establish secretion correlation with age (Supplementary Fig. 4a).

Cellular ATP production. Cells (50,000) were seeded into 96-well cell-culture 
treated dishes and allowed to adhere for 24 h. Using a commercially available ATP 
assay kit (Invitrogen), the cells were assayed as described in the manufacturer’s 
instructions and luminescence measurements were used to determine the 
intracellular ATP content (four technical replicates per sample, n =  2).

Inducing senescence. Wi-38 fibroblasts were induced into senescence by treatment 
with 50 μM bleomycin sulfate (Enzo Life Sciences) for 4 h and allowed to recover 
for 8 d. The cells were verified as senescent via Ki-67 immunostaining and a count 
of population doublings over a period of 4 d, as previously described22.

Univariate age prediction. The cellular age based on univariate parameters was 
determined using a two-point interpolation based on the slope of the trend line 
generated by plotting age versus parameter x. Briefly, the best fit line was generated 
per parameter with age, and the equation defining that best fit line was determined. 
Using the slope and intercept, the predicted age was determined by solving the 
equation for age on the basis of the magnitude of the parameter per sample.

GLM and cellular age prediction. Using the comprehensive data collected from 
experiments for both biomolecular and biophysical features we conducted a 
bivariate analysis making use of a GLM. Briefly, this model is a form of ordinary 
linear regression that allows the response of a variable to be related to the expected 
value via a data-driven link function15,16. In MATLAB, using the built-in function 
‘glmfit’, we computed pairwise predictions for the 208 parameters resulting in 
21,736 combinations (Supplementary Fig. 5c and Supplementary Dataset 1, 
Pair predictions), each having a correlation coefficient and a fit error. Using this 
approach, we were able to relate pairs of parameters and assess the correlation 
and prediction errors as a function of sample age. The top pair predictors were 
generated using the training set, and further validated using the validation set 
(cross-sectional ageing), longitudinal ageing and accelerated/premature ageing 
disease models. Both the univariate and bivariate prediction errors are defined 
as the average difference between the predicted cellular biological age and the 
chronological age for all samples within the set.

The general form of the GLM equation is:

β= −E a y X( ) ( ) (2)1

where E(a) represents the expected value of a (here, the cellular age), Xβ is  
the linear predictor of parameter β (the biophysical and biomolecular features), 
and y is the data-dependent link function delineating a weighted association 
among features.

Statistics. All experiments were conducted using in-plate technical replicates 
with biological replicates specified by ‘n’ in each section. Correlations were 
assessed using Pearson correlation coefficients and the statistical significance 
was assessed using one-way analysis of variance. For 2 ×  2 parameter correlation, 
the cross correlation matrix was computed in MATLAB and the correlation 
topography map was generated using the positive and negative values of the 
magnitude. Cellular heterogeneity was computed as the coefficient of variance for 
single-cell parameters across conditions7. Hierarchical clustering was calculated 
among parameters using the average linkage of the correlation distances to 
determine the natural groupings within the parameter space. Validation of the 
prediction results was performed using two statistically sound methodologies. 
(1) Prediction results for parameters identified in the training set (n =  9) were 
cross-validated using another independent validation set (n =  5), and finalized 
prediction pairs were further validated using another independent sample 
set (n =  9) comprising of cross-sectional and longitudinal ageing samples. (2) 
Because of the size of our sample sets, we combined the training and validation 
sets for the top pair predictors in tables 1 and 2, and we employed leave-one-out 
validation analysis, where we iteratively computed the average correlation  
and fit errors.

Code availability. The processing code for HTCP and visual aided morpho-
phenotyping image recognition is part of a patented, proprietary software package.

Data availability. The authors declare that all data supporting the findings of this 
study are available within the paper and its Supplementary Information.
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